Cargando…
Heteroclinic cycling and extinction in May–Leonard models with demographic stochasticity
May and Leonard (SIAM J Appl Math 29:243–253, 1975) introduced a three-species Lotka–Volterra type population model that exhibits heteroclinic cycling. Rather than producing a periodic limit cycle, the trajectory takes longer and longer to complete each “cycle”, passing closer and closer to unstable...
Autores principales: | Barendregt, Nicholas W., Thomas, Peter J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839821/ https://www.ncbi.nlm.nih.gov/pubmed/36637504 http://dx.doi.org/10.1007/s00285-022-01859-4 |
Ejemplares similares
-
Criteria for robustness of heteroclinic cycles in neural microcircuits
por: Ashwin, Peter, et al.
Publicado: (2011) -
Heteroclinic networks for brain dynamics
por: Meyer-Ortmanns, Hildegard
Publicado: (2023) -
Chunking dynamics: heteroclinics in mind
por: Rabinovich, Mikhail I., et al.
Publicado: (2014) -
Environment driven oscillation in an off-lattice May–Leonard model
por: Bazeia, D., et al.
Publicado: (2021) -
Network inoculation: Heteroclinics and phase transitions in an epidemic
model
por: Yang, Hui, et al.
Publicado: (2016)