Cargando…
Non‐Invasive 3D Photoacoustic Tomography of Angiographic Anatomy and Hemodynamics of Fatty Livers in Rats
Non‐alcoholic fatty liver disease is the most common liver disorder worldwide, which strongly correlates to obesity, diabetes, and metabolic syndromes. Complementary to mainstream liver diagnostic modalities, photoacoustic tomography (PAT) can provide high‐speed images with functional optical contra...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839842/ https://www.ncbi.nlm.nih.gov/pubmed/36394162 http://dx.doi.org/10.1002/advs.202205759 |
_version_ | 1784869531277066240 |
---|---|
author | Tong, Xin Lin, Li Hu, Peng Cao, Rui Zhang, Yang Olick‐Gibson, Joshua Wang, Lihong V. |
author_facet | Tong, Xin Lin, Li Hu, Peng Cao, Rui Zhang, Yang Olick‐Gibson, Joshua Wang, Lihong V. |
author_sort | Tong, Xin |
collection | PubMed |
description | Non‐alcoholic fatty liver disease is the most common liver disorder worldwide, which strongly correlates to obesity, diabetes, and metabolic syndromes. Complementary to mainstream liver diagnostic modalities, photoacoustic tomography (PAT) can provide high‐speed images with functional optical contrast. However, PAT has not been demonstrated to study fatty liver anatomy with clear volumetric vasculatures. The livers of multiple rats are non‐invasively imaged in vivo using the recently developed 3D PAT platform. The system provides isotropically high spatial resolution in 3D space, presenting clear angiographic structures of rat livers without injecting contrast agents. Furthermore, to quantitatively analyze the difference between the livers of lean and obese rats, the authors measured several PAT features and statistical differences between the two groups are observed. In addition to the anatomy, a time‐gated strategy is applied to correct respiration‐induced motion artifacts and extracted the hemodynamics of major blood vessels during the breathing cycles. This study demonstrates the capabilities of 3D‐PAT to reveal both angiographic anatomy and function in rat livers, providing hematogenous information for fatty liver diagnosis. 3D‐PAT, as a new tool for preclinical research, warrants further improvements to be transferred to human pediatric liver imaging. |
format | Online Article Text |
id | pubmed-9839842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98398422023-01-18 Non‐Invasive 3D Photoacoustic Tomography of Angiographic Anatomy and Hemodynamics of Fatty Livers in Rats Tong, Xin Lin, Li Hu, Peng Cao, Rui Zhang, Yang Olick‐Gibson, Joshua Wang, Lihong V. Adv Sci (Weinh) Research Articles Non‐alcoholic fatty liver disease is the most common liver disorder worldwide, which strongly correlates to obesity, diabetes, and metabolic syndromes. Complementary to mainstream liver diagnostic modalities, photoacoustic tomography (PAT) can provide high‐speed images with functional optical contrast. However, PAT has not been demonstrated to study fatty liver anatomy with clear volumetric vasculatures. The livers of multiple rats are non‐invasively imaged in vivo using the recently developed 3D PAT platform. The system provides isotropically high spatial resolution in 3D space, presenting clear angiographic structures of rat livers without injecting contrast agents. Furthermore, to quantitatively analyze the difference between the livers of lean and obese rats, the authors measured several PAT features and statistical differences between the two groups are observed. In addition to the anatomy, a time‐gated strategy is applied to correct respiration‐induced motion artifacts and extracted the hemodynamics of major blood vessels during the breathing cycles. This study demonstrates the capabilities of 3D‐PAT to reveal both angiographic anatomy and function in rat livers, providing hematogenous information for fatty liver diagnosis. 3D‐PAT, as a new tool for preclinical research, warrants further improvements to be transferred to human pediatric liver imaging. John Wiley and Sons Inc. 2022-11-17 /pmc/articles/PMC9839842/ /pubmed/36394162 http://dx.doi.org/10.1002/advs.202205759 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Tong, Xin Lin, Li Hu, Peng Cao, Rui Zhang, Yang Olick‐Gibson, Joshua Wang, Lihong V. Non‐Invasive 3D Photoacoustic Tomography of Angiographic Anatomy and Hemodynamics of Fatty Livers in Rats |
title | Non‐Invasive 3D Photoacoustic Tomography of Angiographic Anatomy and Hemodynamics of Fatty Livers in Rats |
title_full | Non‐Invasive 3D Photoacoustic Tomography of Angiographic Anatomy and Hemodynamics of Fatty Livers in Rats |
title_fullStr | Non‐Invasive 3D Photoacoustic Tomography of Angiographic Anatomy and Hemodynamics of Fatty Livers in Rats |
title_full_unstemmed | Non‐Invasive 3D Photoacoustic Tomography of Angiographic Anatomy and Hemodynamics of Fatty Livers in Rats |
title_short | Non‐Invasive 3D Photoacoustic Tomography of Angiographic Anatomy and Hemodynamics of Fatty Livers in Rats |
title_sort | non‐invasive 3d photoacoustic tomography of angiographic anatomy and hemodynamics of fatty livers in rats |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839842/ https://www.ncbi.nlm.nih.gov/pubmed/36394162 http://dx.doi.org/10.1002/advs.202205759 |
work_keys_str_mv | AT tongxin noninvasive3dphotoacoustictomographyofangiographicanatomyandhemodynamicsoffattyliversinrats AT linli noninvasive3dphotoacoustictomographyofangiographicanatomyandhemodynamicsoffattyliversinrats AT hupeng noninvasive3dphotoacoustictomographyofangiographicanatomyandhemodynamicsoffattyliversinrats AT caorui noninvasive3dphotoacoustictomographyofangiographicanatomyandhemodynamicsoffattyliversinrats AT zhangyang noninvasive3dphotoacoustictomographyofangiographicanatomyandhemodynamicsoffattyliversinrats AT olickgibsonjoshua noninvasive3dphotoacoustictomographyofangiographicanatomyandhemodynamicsoffattyliversinrats AT wanglihongv noninvasive3dphotoacoustictomographyofangiographicanatomyandhemodynamicsoffattyliversinrats |