Cargando…

Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li‐Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions

Despite the promises in high‐energy‐density batteries, Li‐metal anodes (LMAs) have suffered from extensive electrolyte decomposition and unlimited volume expansion owing to thick, porous layer buildup during cycling. It mainly originates from a ceaseless reiteration of the formation and collapse of...

Descripción completa

Detalles Bibliográficos
Autores principales: Jo, Youngseong, Jin, Dahee, Lim, Minhong, Lee, Hyuntae, An, Hyeongguk, Seo, Jiyeon, Kim, Gunyoung, Ren, Xiaodi, Lee, Yong Min, Lee, Hongkyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839847/
https://www.ncbi.nlm.nih.gov/pubmed/36398609
http://dx.doi.org/10.1002/advs.202204812
_version_ 1784869532552134656
author Jo, Youngseong
Jin, Dahee
Lim, Minhong
Lee, Hyuntae
An, Hyeongguk
Seo, Jiyeon
Kim, Gunyoung
Ren, Xiaodi
Lee, Yong Min
Lee, Hongkyung
author_facet Jo, Youngseong
Jin, Dahee
Lim, Minhong
Lee, Hyuntae
An, Hyeongguk
Seo, Jiyeon
Kim, Gunyoung
Ren, Xiaodi
Lee, Yong Min
Lee, Hongkyung
author_sort Jo, Youngseong
collection PubMed
description Despite the promises in high‐energy‐density batteries, Li‐metal anodes (LMAs) have suffered from extensive electrolyte decomposition and unlimited volume expansion owing to thick, porous layer buildup during cycling. It mainly originates from a ceaseless reiteration of the formation and collapse of solid‐electrolyte interphase (SEI). This study reveals the structural and chemical evolutions of the reacted Li layer after different cycles and investigates its detrimental effects on the cycling stability under practical conditions. Instead of the immediately deactivated top surface of the reacted Li layer, the chemical nature underneath the reacted Li layer can be an important indicator of the electrolyte compositional changes. It is found that cycling of LMAs with a lean electrolyte (≈3 g Ah(−1)) causes fast depletion of salt anions, leading to the dynamic evolution of the reacted Li layer structure and composition. Increasing the salt‐solvent complex while reducing the non‐solvating diluent retards the rate of depletion in a localized high‐concentration electrolyte, thereby demonstrating prolonged cycling of Li||NMC622 cells without compromising the Li Coulombic efficiencies and high‐voltage stability.
format Online
Article
Text
id pubmed-9839847
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-98398472023-01-18 Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li‐Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions Jo, Youngseong Jin, Dahee Lim, Minhong Lee, Hyuntae An, Hyeongguk Seo, Jiyeon Kim, Gunyoung Ren, Xiaodi Lee, Yong Min Lee, Hongkyung Adv Sci (Weinh) Research Articles Despite the promises in high‐energy‐density batteries, Li‐metal anodes (LMAs) have suffered from extensive electrolyte decomposition and unlimited volume expansion owing to thick, porous layer buildup during cycling. It mainly originates from a ceaseless reiteration of the formation and collapse of solid‐electrolyte interphase (SEI). This study reveals the structural and chemical evolutions of the reacted Li layer after different cycles and investigates its detrimental effects on the cycling stability under practical conditions. Instead of the immediately deactivated top surface of the reacted Li layer, the chemical nature underneath the reacted Li layer can be an important indicator of the electrolyte compositional changes. It is found that cycling of LMAs with a lean electrolyte (≈3 g Ah(−1)) causes fast depletion of salt anions, leading to the dynamic evolution of the reacted Li layer structure and composition. Increasing the salt‐solvent complex while reducing the non‐solvating diluent retards the rate of depletion in a localized high‐concentration electrolyte, thereby demonstrating prolonged cycling of Li||NMC622 cells without compromising the Li Coulombic efficiencies and high‐voltage stability. John Wiley and Sons Inc. 2022-11-18 /pmc/articles/PMC9839847/ /pubmed/36398609 http://dx.doi.org/10.1002/advs.202204812 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Jo, Youngseong
Jin, Dahee
Lim, Minhong
Lee, Hyuntae
An, Hyeongguk
Seo, Jiyeon
Kim, Gunyoung
Ren, Xiaodi
Lee, Yong Min
Lee, Hongkyung
Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li‐Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions
title Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li‐Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions
title_full Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li‐Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions
title_fullStr Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li‐Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions
title_full_unstemmed Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li‐Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions
title_short Structural and Chemical Evolutions of Li/Electrolyte Interfaces in Li‐Metal Batteries: Tracing Compositional Changes of Electrolytes under Practical Conditions
title_sort structural and chemical evolutions of li/electrolyte interfaces in li‐metal batteries: tracing compositional changes of electrolytes under practical conditions
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839847/
https://www.ncbi.nlm.nih.gov/pubmed/36398609
http://dx.doi.org/10.1002/advs.202204812
work_keys_str_mv AT joyoungseong structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions
AT jindahee structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions
AT limminhong structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions
AT leehyuntae structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions
AT anhyeongguk structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions
AT seojiyeon structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions
AT kimgunyoung structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions
AT renxiaodi structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions
AT leeyongmin structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions
AT leehongkyung structuralandchemicalevolutionsoflielectrolyteinterfacesinlimetalbatteriestracingcompositionalchangesofelectrolytesunderpracticalconditions