Cargando…

CRISPR/Cas12a‐Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout

Most multiplex nucleic acids detection methods require numerous reagents and high‐priced instruments. The emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas has been regarded as a promising point‐of‐care (POC) strategy for nucleic acids detection. However, how to achieve...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Tao, Ke, Xinxin, Li, Wei, Lin, Yu, Liang, Ajuan, Ou, Yangjing, Chen, Chuanxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839848/
https://www.ncbi.nlm.nih.gov/pubmed/36442853
http://dx.doi.org/10.1002/advs.202204689
_version_ 1784869532793307136
author Hu, Tao
Ke, Xinxin
Li, Wei
Lin, Yu
Liang, Ajuan
Ou, Yangjing
Chen, Chuanxia
author_facet Hu, Tao
Ke, Xinxin
Li, Wei
Lin, Yu
Liang, Ajuan
Ou, Yangjing
Chen, Chuanxia
author_sort Hu, Tao
collection PubMed
description Most multiplex nucleic acids detection methods require numerous reagents and high‐priced instruments. The emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas has been regarded as a promising point‐of‐care (POC) strategy for nucleic acids detection. However, how to achieve CRISPR/Cas multiplex biosensing remains a challenge. Here, an affordable means termed CRISPR‐RDB (CRISPR‐based reverse dot blot) for multiplex target detection in parallel, which possesses the advantages of high sensitivity and specificity, cost‐effectiveness, instrument‐free, ease to use, and visualization is reported. CRISPR‐RDB integrates the trans‐cleavage activity of CRISPR‐Cas12a with a commercial RDB technique. It utilizes different Cas12a‐crRNA complexes to separately identify multiple targets in one sample and converts targeted information into colorimetric signals on a piece of accessible nylon membrane that attaches corresponding specific‐oligonucleotide probes. It has demonstrated that the versatility of CRISPR‐RDB by constructing a four‐channel system to simultaneously detect influenza A, influenza B, respiratory syncytial virus, and SARS‐CoV‐2. With a simple modification of crRNAs, the CRISPR‐RDB can be modified to detect human papillomavirus, saving two‐thirds of the time compared to a commercial PCR‐RDB kit. Further, a user‐friendly microchip system for convenient use, as well as a smartphone app for signal interpretation, is engineered. CRISPR‐RDB represents a desirable option for multiplexed biosensing and on‐site diagnosis.
format Online
Article
Text
id pubmed-9839848
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-98398482023-01-18 CRISPR/Cas12a‐Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout Hu, Tao Ke, Xinxin Li, Wei Lin, Yu Liang, Ajuan Ou, Yangjing Chen, Chuanxia Adv Sci (Weinh) Research Articles Most multiplex nucleic acids detection methods require numerous reagents and high‐priced instruments. The emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas has been regarded as a promising point‐of‐care (POC) strategy for nucleic acids detection. However, how to achieve CRISPR/Cas multiplex biosensing remains a challenge. Here, an affordable means termed CRISPR‐RDB (CRISPR‐based reverse dot blot) for multiplex target detection in parallel, which possesses the advantages of high sensitivity and specificity, cost‐effectiveness, instrument‐free, ease to use, and visualization is reported. CRISPR‐RDB integrates the trans‐cleavage activity of CRISPR‐Cas12a with a commercial RDB technique. It utilizes different Cas12a‐crRNA complexes to separately identify multiple targets in one sample and converts targeted information into colorimetric signals on a piece of accessible nylon membrane that attaches corresponding specific‐oligonucleotide probes. It has demonstrated that the versatility of CRISPR‐RDB by constructing a four‐channel system to simultaneously detect influenza A, influenza B, respiratory syncytial virus, and SARS‐CoV‐2. With a simple modification of crRNAs, the CRISPR‐RDB can be modified to detect human papillomavirus, saving two‐thirds of the time compared to a commercial PCR‐RDB kit. Further, a user‐friendly microchip system for convenient use, as well as a smartphone app for signal interpretation, is engineered. CRISPR‐RDB represents a desirable option for multiplexed biosensing and on‐site diagnosis. John Wiley and Sons Inc. 2022-11-28 /pmc/articles/PMC9839848/ /pubmed/36442853 http://dx.doi.org/10.1002/advs.202204689 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Hu, Tao
Ke, Xinxin
Li, Wei
Lin, Yu
Liang, Ajuan
Ou, Yangjing
Chen, Chuanxia
CRISPR/Cas12a‐Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout
title CRISPR/Cas12a‐Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout
title_full CRISPR/Cas12a‐Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout
title_fullStr CRISPR/Cas12a‐Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout
title_full_unstemmed CRISPR/Cas12a‐Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout
title_short CRISPR/Cas12a‐Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout
title_sort crispr/cas12a‐enabled multiplex biosensing strategy via an affordable and visual nylon membrane readout
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839848/
https://www.ncbi.nlm.nih.gov/pubmed/36442853
http://dx.doi.org/10.1002/advs.202204689
work_keys_str_mv AT hutao crisprcas12aenabledmultiplexbiosensingstrategyviaanaffordableandvisualnylonmembranereadout
AT kexinxin crisprcas12aenabledmultiplexbiosensingstrategyviaanaffordableandvisualnylonmembranereadout
AT liwei crisprcas12aenabledmultiplexbiosensingstrategyviaanaffordableandvisualnylonmembranereadout
AT linyu crisprcas12aenabledmultiplexbiosensingstrategyviaanaffordableandvisualnylonmembranereadout
AT liangajuan crisprcas12aenabledmultiplexbiosensingstrategyviaanaffordableandvisualnylonmembranereadout
AT ouyangjing crisprcas12aenabledmultiplexbiosensingstrategyviaanaffordableandvisualnylonmembranereadout
AT chenchuanxia crisprcas12aenabledmultiplexbiosensingstrategyviaanaffordableandvisualnylonmembranereadout