Cargando…
Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing
Diabetic wounds are a common complication in diabetes patients. Due to peripheral nerve damage and vascular dysfunction, diabetic wounds are prone to progress to local ulcers, wound gangrene and even to require amputation, bringing huge psychological and economic burdens to patients. However, the cu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chinese Medical Multimedia Press Co., Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840091/ https://www.ncbi.nlm.nih.gov/pubmed/36654776 http://dx.doi.org/10.12336/biomatertransl.2022.03.003 |
_version_ | 1784869572200890368 |
---|---|
author | Hu, Yiqiang Xiong, Yuan Tao, Ranyang Xue, Hang Chen, Lang Lin, Ze Panayi, Adriana C. Mi, Bobin Liu, Guohui |
author_facet | Hu, Yiqiang Xiong, Yuan Tao, Ranyang Xue, Hang Chen, Lang Lin, Ze Panayi, Adriana C. Mi, Bobin Liu, Guohui |
author_sort | Hu, Yiqiang |
collection | PubMed |
description | Diabetic wounds are a common complication in diabetes patients. Due to peripheral nerve damage and vascular dysfunction, diabetic wounds are prone to progress to local ulcers, wound gangrene and even to require amputation, bringing huge psychological and economic burdens to patients. However, the current treatment methods for diabetic wounds mainly include wound accessories, negative pressure drainage, skin grafting and surgery; there is still no ideal treatment to promote diabetic wound healing at present. Appropriate animal models can simulate the physiological mechanism of diabetic wounds, providing a basis for translational research in treating diabetic wound healing. Although there are no animal models that can fully mimic the pathophysiological mechanisms of diabetic wounds in humans, it is vital to explore animal simulation models used in basic research and preclinical studies of diabetic wounds. In addition, hydrogel materials are regarded as a promising treatment for diabetic wounds because of their good antimicrobial activity, biocompatibility, biodegradation and appropriate mechanical properties. Herein, we review and discuss the different animal models used to investigate the pathological mechanisms of diabetic wounds. We further discuss the promising future application of hydrogel biomaterials in diabetic wound healing. |
format | Online Article Text |
id | pubmed-9840091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Chinese Medical Multimedia Press Co., Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-98400912023-01-17 Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing Hu, Yiqiang Xiong, Yuan Tao, Ranyang Xue, Hang Chen, Lang Lin, Ze Panayi, Adriana C. Mi, Bobin Liu, Guohui Biomater Transl Review Diabetic wounds are a common complication in diabetes patients. Due to peripheral nerve damage and vascular dysfunction, diabetic wounds are prone to progress to local ulcers, wound gangrene and even to require amputation, bringing huge psychological and economic burdens to patients. However, the current treatment methods for diabetic wounds mainly include wound accessories, negative pressure drainage, skin grafting and surgery; there is still no ideal treatment to promote diabetic wound healing at present. Appropriate animal models can simulate the physiological mechanism of diabetic wounds, providing a basis for translational research in treating diabetic wound healing. Although there are no animal models that can fully mimic the pathophysiological mechanisms of diabetic wounds in humans, it is vital to explore animal simulation models used in basic research and preclinical studies of diabetic wounds. In addition, hydrogel materials are regarded as a promising treatment for diabetic wounds because of their good antimicrobial activity, biocompatibility, biodegradation and appropriate mechanical properties. Herein, we review and discuss the different animal models used to investigate the pathological mechanisms of diabetic wounds. We further discuss the promising future application of hydrogel biomaterials in diabetic wound healing. Chinese Medical Multimedia Press Co., Ltd 2022-09-28 /pmc/articles/PMC9840091/ /pubmed/36654776 http://dx.doi.org/10.12336/biomatertransl.2022.03.003 Text en https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Hu, Yiqiang Xiong, Yuan Tao, Ranyang Xue, Hang Chen, Lang Lin, Ze Panayi, Adriana C. Mi, Bobin Liu, Guohui Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing |
title | Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing |
title_full | Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing |
title_fullStr | Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing |
title_full_unstemmed | Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing |
title_short | Advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing |
title_sort | advances and perspective on animal models and hydrogel biomaterials for diabetic wound healing |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840091/ https://www.ncbi.nlm.nih.gov/pubmed/36654776 http://dx.doi.org/10.12336/biomatertransl.2022.03.003 |
work_keys_str_mv | AT huyiqiang advancesandperspectiveonanimalmodelsandhydrogelbiomaterialsfordiabeticwoundhealing AT xiongyuan advancesandperspectiveonanimalmodelsandhydrogelbiomaterialsfordiabeticwoundhealing AT taoranyang advancesandperspectiveonanimalmodelsandhydrogelbiomaterialsfordiabeticwoundhealing AT xuehang advancesandperspectiveonanimalmodelsandhydrogelbiomaterialsfordiabeticwoundhealing AT chenlang advancesandperspectiveonanimalmodelsandhydrogelbiomaterialsfordiabeticwoundhealing AT linze advancesandperspectiveonanimalmodelsandhydrogelbiomaterialsfordiabeticwoundhealing AT panayiadrianac advancesandperspectiveonanimalmodelsandhydrogelbiomaterialsfordiabeticwoundhealing AT mibobin advancesandperspectiveonanimalmodelsandhydrogelbiomaterialsfordiabeticwoundhealing AT liuguohui advancesandperspectiveonanimalmodelsandhydrogelbiomaterialsfordiabeticwoundhealing |