Cargando…

MeGATAs, functional generalists in interactions between cassava growth and development, and abiotic stresses

The proteins with DNA-binding preference to the consensus DNA sequence (A/T) GATA (A/G) belong to a GATA transcription factor family, with a wide array of biological processes in plants. Cassava (Manihot esculenta) is an important food crop with high production of starch in storage roots. Little was...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yan-Liu, Chen, Yu-Lan, Wei, Li, Fan, Xian-Wei, Dong, Ming-You, Li, You-Zhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840210/
https://www.ncbi.nlm.nih.gov/pubmed/36654987
http://dx.doi.org/10.1093/aobpla/plac057
Descripción
Sumario:The proteins with DNA-binding preference to the consensus DNA sequence (A/T) GATA (A/G) belong to a GATA transcription factor family, with a wide array of biological processes in plants. Cassava (Manihot esculenta) is an important food crop with high production of starch in storage roots. Little was however known about cassava GATA domain-containing genes (MeGATAs). Thirty-six MeGATAs, MeGATA1 to MeGATA36, were found in this study. Some MeGATAs showed a collinear relationship with orthologous genes of Arabidopsis, poplar and potato, rice, maize and sorghum. Eight MeGATA-encoded proteins (MeGATAs) analysed were all localized in the nucleus. Some MeGATAs had potentials of binding ligands and/or enzyme activity. One pair of tandem-duplicated MeGATA17–MeGATA18 and 30 pairs of whole genome-duplicated MeGATAs were found. Fourteen MeGATAs showed low or no expression in the tissues. Nine analysed MeGATAs showed expression responses to abiotic stresses and exogenous phytohormones. Three groups of MeGATA protein interactions were found. Fifty-three miRNAs which can target 18 MeGATAs were identified. Eight MeGATAs were found to target other 292 cassava genes, which were directed to radial pattern formation and phyllome development by gene ontology enrichment, and autophagy by Kyoto Encyclopaedia of Genes and Genomes enrichment. These data suggest that MeGATAs are functional generalists in interactions between cassava growth and development, abiotic stresses and starch metabolism.