Cargando…

AI-based MRI auto-segmentation of brain tumor in rodents, a multicenter study

Automatic segmentation of rodent brain tumor on magnetic resonance imaging (MRI) may facilitate biomedical research. The current study aims to prove the feasibility for automatic segmentation by artificial intelligence (AI), and practicability of AI-assisted segmentation. MRI images, including T2WI,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shuncong, Pang, Xin, de Keyzer, Frederik, Feng, Yuanbo, Swinnen, Johan V., Yu, Jie, Ni, Yicheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840251/
https://www.ncbi.nlm.nih.gov/pubmed/36641470
http://dx.doi.org/10.1186/s40478-023-01509-w
Descripción
Sumario:Automatic segmentation of rodent brain tumor on magnetic resonance imaging (MRI) may facilitate biomedical research. The current study aims to prove the feasibility for automatic segmentation by artificial intelligence (AI), and practicability of AI-assisted segmentation. MRI images, including T2WI, T1WI and CE-T1WI, of brain tumor from 57 WAG/Rij rats in KU Leuven and 46 mice from the cancer imaging archive (TCIA) were collected. A 3D U-Net architecture was adopted for segmentation of tumor bearing brain and brain tumor. After training, these models were tested with both datasets after Gaussian noise addition. Reduction of inter-observer disparity by AI-assisted segmentation was also evaluated. The AI model segmented tumor-bearing brain well for both Leuven and TCIA datasets, with Dice similarity coefficients (DSCs) of 0.87 and 0.85 respectively. After noise addition, the performance remained unchanged when the signal–noise ratio (SNR) was higher than two or eight, respectively. For the segmentation of tumor lesions, AI-based model yielded DSCs of 0.70 and 0.61 for Leuven and TCIA datasets respectively. Similarly, the performance is uncompromised when the SNR was over two and eight respectively. AI-assisted segmentation could significantly reduce the inter-observer disparities and segmentation time in both rats and mice. Both AI models for segmenting brain or tumor lesions could improve inter-observer agreement and therefore contributed to the standardization of the following biomedical studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40478-023-01509-w.