Cargando…
Deep Learning Model for Static Ocular Torsion Detection Using Synthetically Generated Fundus Images
PURPOSE: The objective of the study is to develop deep learning models using synthetic fundus images to assess the direction (intorsion versus extorsion) and amount (physiologic versus pathologic) of static ocular torsion. Static ocular torsion assessment is an important clinical tool for classifyin...
Autores principales: | Wang, Chen, Bai, Yunong, Tsang, Ashley, Bian, Yuhan, Gou, Yifan, Lin, Yan X., Zhao, Matthew, Wei, Tony Y., Desman, Jacob M., Taylor, Casey Overby, Greenstein, Joseph L., Otero-Millan, Jorge, Liu, Tin Yan Alvin, Kheradmand, Amir, Zee, David S., Green, Kemar E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840445/ https://www.ncbi.nlm.nih.gov/pubmed/36630147 http://dx.doi.org/10.1167/tvst.12.1.17 |
Ejemplares similares
-
A Multicenter Clinical Study of the Automated Fundus Screening Algorithm
por: Li, Fei, et al.
Publicado: (2022) -
Fundus Tessellated Density Assessed by Deep Learning in Primary School Children
por: Huang, Dan, et al.
Publicado: (2023) -
Automatic Multilabel Classification of Multiple Fundus Diseases Based on Convolutional Neural Network With Squeeze-and-Excitation Attention
por: Lu, Zhenzhen, et al.
Publicado: (2023) -
Malware detection using static analysis in Android: a review of FeCO (features, classification, and obfuscation)
por: Jusoh, Rosmalissa, et al.
Publicado: (2021) -
Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma
por: Thiéry, Alexandre H., et al.
Publicado: (2023)