Cargando…
Evaluation of histopathological changes and exosomal biogenesis in pulmonary tissue of diabetic rats
Diabetes mellitus is one of the leading causes of death globally. The development of cellular injuries and impaired energy metabolism are involved in the pathogenesis of diabetes mellitus, leading to severe diabetic complications in different tissues such as the pulmonary tissue. Autophagy is a doub...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Urmia University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840785/ https://www.ncbi.nlm.nih.gov/pubmed/36686866 http://dx.doi.org/10.30466/vrf.2022.544355.3314 |
_version_ | 1784869692027961344 |
---|---|
author | Delkhosh, Aref Hobbenaghi, Rahim Rahbarghazi, Reza Ahmadi, Mahdi Rezaie, Jafar |
author_facet | Delkhosh, Aref Hobbenaghi, Rahim Rahbarghazi, Reza Ahmadi, Mahdi Rezaie, Jafar |
author_sort | Delkhosh, Aref |
collection | PubMed |
description | Diabetes mellitus is one of the leading causes of death globally. The development of cellular injuries and impaired energy metabolism are involved in the pathogenesis of diabetes mellitus, leading to severe diabetic complications in different tissues such as the pulmonary tissue. Autophagy is a double-edged sword mechanism required for maintaining cell survival and homeostasis. Any abnormalities in autophagic response can lead to the progression of several diseases. Here, we aimed to assess the effect of diabetic conditions on the autophagic response and exosome secretion in a rat model of type 2 diabetes mellitus. The experimental diabetic group received 45.00 mg kg(-1) streptozocin (STZ) dissolved in 0.10 M sodium citrate. After 4 weeks, we monitored autophagic response and exosome biogenesis in the pulmonary tract using immunohistochemistry (IHC) and Real-time polymerase chain reaction analyses, respectively. Histological examination revealed the interstitial bronchopneumonia indicating enhanced immune cell infiltration into the pulmonary parenchyma. Immunohistochemistry staining displayed an enhanced autophagic response through the induction of microtuble-associated protein light chain 3 (LC3) and protein sequestosome 1 (P62) compared to the control rats. These changes coincided with significant induction of tetraspanin CD63 in STZ-induced diabetic rats relative to control rats. In conclusion, a diabetic condition can increase the autophagic response in pulmonary tissue. The accumulation of P62 in the pulmonary niche exhibits an incomplete autophagic response. The abnormal autophagy response can increase pulmonary cell sensitivity against injuries. |
format | Online Article Text |
id | pubmed-9840785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Urmia University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-98407852023-01-20 Evaluation of histopathological changes and exosomal biogenesis in pulmonary tissue of diabetic rats Delkhosh, Aref Hobbenaghi, Rahim Rahbarghazi, Reza Ahmadi, Mahdi Rezaie, Jafar Vet Res Forum Original Article Diabetes mellitus is one of the leading causes of death globally. The development of cellular injuries and impaired energy metabolism are involved in the pathogenesis of diabetes mellitus, leading to severe diabetic complications in different tissues such as the pulmonary tissue. Autophagy is a double-edged sword mechanism required for maintaining cell survival and homeostasis. Any abnormalities in autophagic response can lead to the progression of several diseases. Here, we aimed to assess the effect of diabetic conditions on the autophagic response and exosome secretion in a rat model of type 2 diabetes mellitus. The experimental diabetic group received 45.00 mg kg(-1) streptozocin (STZ) dissolved in 0.10 M sodium citrate. After 4 weeks, we monitored autophagic response and exosome biogenesis in the pulmonary tract using immunohistochemistry (IHC) and Real-time polymerase chain reaction analyses, respectively. Histological examination revealed the interstitial bronchopneumonia indicating enhanced immune cell infiltration into the pulmonary parenchyma. Immunohistochemistry staining displayed an enhanced autophagic response through the induction of microtuble-associated protein light chain 3 (LC3) and protein sequestosome 1 (P62) compared to the control rats. These changes coincided with significant induction of tetraspanin CD63 in STZ-induced diabetic rats relative to control rats. In conclusion, a diabetic condition can increase the autophagic response in pulmonary tissue. The accumulation of P62 in the pulmonary niche exhibits an incomplete autophagic response. The abnormal autophagy response can increase pulmonary cell sensitivity against injuries. Urmia University Press 2022 2022-12-15 /pmc/articles/PMC9840785/ /pubmed/36686866 http://dx.doi.org/10.30466/vrf.2022.544355.3314 Text en https://creativecommons.org/licenses/by-nc-sa/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.https://creativecommons.org/licenses/by-nc-sa/4.0/ |
spellingShingle | Original Article Delkhosh, Aref Hobbenaghi, Rahim Rahbarghazi, Reza Ahmadi, Mahdi Rezaie, Jafar Evaluation of histopathological changes and exosomal biogenesis in pulmonary tissue of diabetic rats |
title | Evaluation of histopathological changes and exosomal biogenesis in pulmonary tissue of diabetic rats |
title_full | Evaluation of histopathological changes and exosomal biogenesis in pulmonary tissue of diabetic rats |
title_fullStr | Evaluation of histopathological changes and exosomal biogenesis in pulmonary tissue of diabetic rats |
title_full_unstemmed | Evaluation of histopathological changes and exosomal biogenesis in pulmonary tissue of diabetic rats |
title_short | Evaluation of histopathological changes and exosomal biogenesis in pulmonary tissue of diabetic rats |
title_sort | evaluation of histopathological changes and exosomal biogenesis in pulmonary tissue of diabetic rats |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840785/ https://www.ncbi.nlm.nih.gov/pubmed/36686866 http://dx.doi.org/10.30466/vrf.2022.544355.3314 |
work_keys_str_mv | AT delkhosharef evaluationofhistopathologicalchangesandexosomalbiogenesisinpulmonarytissueofdiabeticrats AT hobbenaghirahim evaluationofhistopathologicalchangesandexosomalbiogenesisinpulmonarytissueofdiabeticrats AT rahbarghazireza evaluationofhistopathologicalchangesandexosomalbiogenesisinpulmonarytissueofdiabeticrats AT ahmadimahdi evaluationofhistopathologicalchangesandexosomalbiogenesisinpulmonarytissueofdiabeticrats AT rezaiejafar evaluationofhistopathologicalchangesandexosomalbiogenesisinpulmonarytissueofdiabeticrats |