Cargando…
Blooming plant species diversity patterns in two adjacent Costa Rican highland ecosystems
The Costa Rican Paramo is a unique ecosystem with high levels of endemism that is geographically isolated from the Andean Paramos. Paramo ecosystems occur above Montane Forests, below the permanent snow level, and their vegetation differs notably from that of adjacent Montane Forests. We compared th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840854/ https://www.ncbi.nlm.nih.gov/pubmed/36650840 http://dx.doi.org/10.7717/peerj.14445 |
Sumario: | The Costa Rican Paramo is a unique ecosystem with high levels of endemism that is geographically isolated from the Andean Paramos. Paramo ecosystems occur above Montane Forests, below the permanent snow level, and their vegetation differs notably from that of adjacent Montane Forests. We compared the composition and beta diversity of blooming plant species using phenological data from functional plant groups (i.e., insect-visited, bird-visited and insect + bird-visited plants) between a Paramo and a Montane Forest site in Costa Rica and analyzed seasonal changes in blooming plant diversity between the rainy and dry seasons. Species richness was higher in the Montane Forest for all plant categories, except for insect-visited plants, which was higher in the Paramo. Beta diversity and blooming plant composition differed between both ecosystems and seasons. Differences in species richness and beta diversity between Paramo and the adjacent Montane Forest are likely the result of dispersal events that occurred during the last glacial period and subsequent isolation, as climate turned to tropical conditions after the Pleistocene, and to stressful abiotic conditions in the Paramo ecosystem that limit species establishment. Differences in blooming plant composition between both ecosystems and seasons are likely attributed to differential effects of climatic cues triggering the flowering events in each ecosystem, but phylogenetic conservatism cannot be discarded. Analyses of species composition and richness based on flowering phenology data are useful to evaluate potential floral resources for floral visitors (insects and birds) and how these resources change spatially and temporarily in endangered ecosystems such as the Paramo. |
---|