Cargando…
Supervised chemical graph mining improves drug-induced liver injury prediction
Drug-induced liver injury (DILI) is the main cause of drug failure in clinical trials. The characterization of toxic compounds in terms of chemical structure is important because compounds can be metabolized to toxic substances in the liver. Traditional machine learning approaches have had limited s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840932/ https://www.ncbi.nlm.nih.gov/pubmed/36654861 http://dx.doi.org/10.1016/j.isci.2022.105677 |
_version_ | 1784869719922180096 |
---|---|
author | Lim, Sangsoo Kim, Youngkuk Gu, Jeonghyeon Lee, Sunho Shin, Wonseok Kim, Sun |
author_facet | Lim, Sangsoo Kim, Youngkuk Gu, Jeonghyeon Lee, Sunho Shin, Wonseok Kim, Sun |
author_sort | Lim, Sangsoo |
collection | PubMed |
description | Drug-induced liver injury (DILI) is the main cause of drug failure in clinical trials. The characterization of toxic compounds in terms of chemical structure is important because compounds can be metabolized to toxic substances in the liver. Traditional machine learning approaches have had limited success in predicting DILI, and emerging deep graph neural network (GNN) models are yet powerful enough to predict DILI. In this study, we developed a completely different approach, supervised subgraph mining (SSM), a strategy to mine explicit subgraph features by iteratively updating individual graph transitions to maximize DILI fidelity. Our method outperformed previous methods including state-of-the-art GNN tools in classifying DILI on two different datasets: DILIst and TDC-benchmark. We also combined the subgraph features by using SMARTS-based frequent structural pattern matching and associated them with drugs’ ATC code. |
format | Online Article Text |
id | pubmed-9840932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-98409322023-01-17 Supervised chemical graph mining improves drug-induced liver injury prediction Lim, Sangsoo Kim, Youngkuk Gu, Jeonghyeon Lee, Sunho Shin, Wonseok Kim, Sun iScience Article Drug-induced liver injury (DILI) is the main cause of drug failure in clinical trials. The characterization of toxic compounds in terms of chemical structure is important because compounds can be metabolized to toxic substances in the liver. Traditional machine learning approaches have had limited success in predicting DILI, and emerging deep graph neural network (GNN) models are yet powerful enough to predict DILI. In this study, we developed a completely different approach, supervised subgraph mining (SSM), a strategy to mine explicit subgraph features by iteratively updating individual graph transitions to maximize DILI fidelity. Our method outperformed previous methods including state-of-the-art GNN tools in classifying DILI on two different datasets: DILIst and TDC-benchmark. We also combined the subgraph features by using SMARTS-based frequent structural pattern matching and associated them with drugs’ ATC code. Elsevier 2022-12-26 /pmc/articles/PMC9840932/ /pubmed/36654861 http://dx.doi.org/10.1016/j.isci.2022.105677 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Lim, Sangsoo Kim, Youngkuk Gu, Jeonghyeon Lee, Sunho Shin, Wonseok Kim, Sun Supervised chemical graph mining improves drug-induced liver injury prediction |
title | Supervised chemical graph mining improves drug-induced liver injury prediction |
title_full | Supervised chemical graph mining improves drug-induced liver injury prediction |
title_fullStr | Supervised chemical graph mining improves drug-induced liver injury prediction |
title_full_unstemmed | Supervised chemical graph mining improves drug-induced liver injury prediction |
title_short | Supervised chemical graph mining improves drug-induced liver injury prediction |
title_sort | supervised chemical graph mining improves drug-induced liver injury prediction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840932/ https://www.ncbi.nlm.nih.gov/pubmed/36654861 http://dx.doi.org/10.1016/j.isci.2022.105677 |
work_keys_str_mv | AT limsangsoo supervisedchemicalgraphminingimprovesdruginducedliverinjuryprediction AT kimyoungkuk supervisedchemicalgraphminingimprovesdruginducedliverinjuryprediction AT gujeonghyeon supervisedchemicalgraphminingimprovesdruginducedliverinjuryprediction AT leesunho supervisedchemicalgraphminingimprovesdruginducedliverinjuryprediction AT shinwonseok supervisedchemicalgraphminingimprovesdruginducedliverinjuryprediction AT kimsun supervisedchemicalgraphminingimprovesdruginducedliverinjuryprediction |