Cargando…

Information cocoons in online navigation

Social media and online navigation bring us enjoyable experiences in accessing information, and simultaneously create information cocoons (ICs) in which we are unconsciously trapped with limited and biased information. We provide a formal definition of IC in the scenario of online navigation. Subseq...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Lei, Pan, Xue, Liu, Kecheng, Yang, Zimo, Liu, Jianguo, Zhou, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840977/
https://www.ncbi.nlm.nih.gov/pubmed/36654864
http://dx.doi.org/10.1016/j.isci.2022.105893
Descripción
Sumario:Social media and online navigation bring us enjoyable experiences in accessing information, and simultaneously create information cocoons (ICs) in which we are unconsciously trapped with limited and biased information. We provide a formal definition of IC in the scenario of online navigation. Subsequently, by analyzing real recommendation networks extracted from Science, PNAS, and Amazon websites, and testing mainstream algorithms in disparate recommender systems, we demonstrate that similarity-based recommendation techniques result in ICs, which suppress the system navigability by hundreds of times. We further propose a flexible recommendation strategy that addresses the IC-induced problem and improves retrieval accuracy in navigation, which are demonstrated by simulations on real data and online experiments on the largest video website in China. This paper quantifies the challenge of ICs in recommender systems and presents a viable solution, which offer insights into the industrial design of algorithms, future scientific studies, as well as policy making.