Cargando…

Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma

We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were e...

Descripción completa

Detalles Bibliográficos
Autores principales: Eertink, Jakoba J., Zwezerijnen, Gerben J. C., Wiegers, Sanne E., Pieplenbosch, Simone, Chamuleau, Martine E. D., Lugtenburg, Pieternella J., de Jong, Daphne, Ylstra, Bauke, Mendeville, Matias, Dührsen, Ulrich, Hanoun, Christine, Hüttmann, Andreas, Richter, Julia, Klapper, Wolfram, Jauw, Yvonne W. S., Hoekstra, Otto S., de Vet, Henrica C. W., Boellaard, Ronald, Zijlstra, Josée M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society of Hematology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841040/
https://www.ncbi.nlm.nih.gov/pubmed/36306337
http://dx.doi.org/10.1182/bloodadvances.2022008629
_version_ 1784869744408526848
author Eertink, Jakoba J.
Zwezerijnen, Gerben J. C.
Wiegers, Sanne E.
Pieplenbosch, Simone
Chamuleau, Martine E. D.
Lugtenburg, Pieternella J.
de Jong, Daphne
Ylstra, Bauke
Mendeville, Matias
Dührsen, Ulrich
Hanoun, Christine
Hüttmann, Andreas
Richter, Julia
Klapper, Wolfram
Jauw, Yvonne W. S.
Hoekstra, Otto S.
de Vet, Henrica C. W.
Boellaard, Ronald
Zijlstra, Josée M.
author_facet Eertink, Jakoba J.
Zwezerijnen, Gerben J. C.
Wiegers, Sanne E.
Pieplenbosch, Simone
Chamuleau, Martine E. D.
Lugtenburg, Pieternella J.
de Jong, Daphne
Ylstra, Bauke
Mendeville, Matias
Dührsen, Ulrich
Hanoun, Christine
Hüttmann, Andreas
Richter, Julia
Klapper, Wolfram
Jauw, Yvonne W. S.
Hoekstra, Otto S.
de Vet, Henrica C. W.
Boellaard, Ronald
Zijlstra, Josée M.
author_sort Eertink, Jakoba J.
collection PubMed
description We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were extracted from the baseline positron emission tomography–computed tomography of 323 patients, which included maximum standardized uptake value (SUV(max)), SUV(peak), SUV(mean), metabolic tumor volume (MTV), total lesion glycolysis, and 12 dissemination features pertaining to distance, differences in uptake and volume between lesions, respectively. Logistic regression with backward feature selection was used to predict progression after 2 years. The predictive value of (1) International Prognostic Index (IPI); (2) IPI plus MYC; (3) IPI, MYC, and MTV; (4) radiomics; and (5) MYC plus radiomics models were tested using the cross-validated area under the curve (CV-AUC) and positive predictive values (PPVs). IPI yielded a CV-AUC of 0.65 ± 0.07 with a PPV of 29.6%. The IPI plus MYC model yielded a CV-AUC of 0.68 ± 0.08. IPI, MYC, and MTV yielded a CV-AUC of 0.74 ± 0.08. The highest model performance of the radiomics model was observed for MTV combined with the maximum distance between the largest lesion and another lesion, the maximum difference in SUV(peak) between 2 lesions, and the sum of distances between all lesions, yielding an improved CV-AUC of 0.77 ± 0.07. The same radiomics features were retained when adding MYC (CV-AUC, 0.77 ± 0.07). PPV was highest for the MYC plus radiomics model (50.0%) and increased by 20% compared with the IPI (29.6%). Adding radiomics features improved model performance and PPV and can, therefore, aid in identifying poor prognosis patients.
format Online
Article
Text
id pubmed-9841040
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The American Society of Hematology
record_format MEDLINE/PubMed
spelling pubmed-98410402023-01-19 Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma Eertink, Jakoba J. Zwezerijnen, Gerben J. C. Wiegers, Sanne E. Pieplenbosch, Simone Chamuleau, Martine E. D. Lugtenburg, Pieternella J. de Jong, Daphne Ylstra, Bauke Mendeville, Matias Dührsen, Ulrich Hanoun, Christine Hüttmann, Andreas Richter, Julia Klapper, Wolfram Jauw, Yvonne W. S. Hoekstra, Otto S. de Vet, Henrica C. W. Boellaard, Ronald Zijlstra, Josée M. Blood Adv Lymphoid Neoplasia We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were extracted from the baseline positron emission tomography–computed tomography of 323 patients, which included maximum standardized uptake value (SUV(max)), SUV(peak), SUV(mean), metabolic tumor volume (MTV), total lesion glycolysis, and 12 dissemination features pertaining to distance, differences in uptake and volume between lesions, respectively. Logistic regression with backward feature selection was used to predict progression after 2 years. The predictive value of (1) International Prognostic Index (IPI); (2) IPI plus MYC; (3) IPI, MYC, and MTV; (4) radiomics; and (5) MYC plus radiomics models were tested using the cross-validated area under the curve (CV-AUC) and positive predictive values (PPVs). IPI yielded a CV-AUC of 0.65 ± 0.07 with a PPV of 29.6%. The IPI plus MYC model yielded a CV-AUC of 0.68 ± 0.08. IPI, MYC, and MTV yielded a CV-AUC of 0.74 ± 0.08. The highest model performance of the radiomics model was observed for MTV combined with the maximum distance between the largest lesion and another lesion, the maximum difference in SUV(peak) between 2 lesions, and the sum of distances between all lesions, yielding an improved CV-AUC of 0.77 ± 0.07. The same radiomics features were retained when adding MYC (CV-AUC, 0.77 ± 0.07). PPV was highest for the MYC plus radiomics model (50.0%) and increased by 20% compared with the IPI (29.6%). Adding radiomics features improved model performance and PPV and can, therefore, aid in identifying poor prognosis patients. The American Society of Hematology 2022-11-02 /pmc/articles/PMC9841040/ /pubmed/36306337 http://dx.doi.org/10.1182/bloodadvances.2022008629 Text en © 2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Lymphoid Neoplasia
Eertink, Jakoba J.
Zwezerijnen, Gerben J. C.
Wiegers, Sanne E.
Pieplenbosch, Simone
Chamuleau, Martine E. D.
Lugtenburg, Pieternella J.
de Jong, Daphne
Ylstra, Bauke
Mendeville, Matias
Dührsen, Ulrich
Hanoun, Christine
Hüttmann, Andreas
Richter, Julia
Klapper, Wolfram
Jauw, Yvonne W. S.
Hoekstra, Otto S.
de Vet, Henrica C. W.
Boellaard, Ronald
Zijlstra, Josée M.
Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma
title Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma
title_full Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma
title_fullStr Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma
title_full_unstemmed Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma
title_short Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma
title_sort baseline radiomics features and myc rearrangement status predict progression in aggressive b-cell lymphoma
topic Lymphoid Neoplasia
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841040/
https://www.ncbi.nlm.nih.gov/pubmed/36306337
http://dx.doi.org/10.1182/bloodadvances.2022008629
work_keys_str_mv AT eertinkjakobaj baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT zwezerijnengerbenjc baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT wiegerssannee baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT pieplenboschsimone baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT chamuleaumartineed baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT lugtenburgpieternellaj baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT dejongdaphne baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT ylstrabauke baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT mendevillematias baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT duhrsenulrich baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT hanounchristine baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT huttmannandreas baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT richterjulia baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT klapperwolfram baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT jauwyvonnews baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT hoekstraottos baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT devethenricacw baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT boellaardronald baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT zijlstrajoseem baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma
AT baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma