Cargando…
Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma
We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were e...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society of Hematology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841040/ https://www.ncbi.nlm.nih.gov/pubmed/36306337 http://dx.doi.org/10.1182/bloodadvances.2022008629 |
_version_ | 1784869744408526848 |
---|---|
author | Eertink, Jakoba J. Zwezerijnen, Gerben J. C. Wiegers, Sanne E. Pieplenbosch, Simone Chamuleau, Martine E. D. Lugtenburg, Pieternella J. de Jong, Daphne Ylstra, Bauke Mendeville, Matias Dührsen, Ulrich Hanoun, Christine Hüttmann, Andreas Richter, Julia Klapper, Wolfram Jauw, Yvonne W. S. Hoekstra, Otto S. de Vet, Henrica C. W. Boellaard, Ronald Zijlstra, Josée M. |
author_facet | Eertink, Jakoba J. Zwezerijnen, Gerben J. C. Wiegers, Sanne E. Pieplenbosch, Simone Chamuleau, Martine E. D. Lugtenburg, Pieternella J. de Jong, Daphne Ylstra, Bauke Mendeville, Matias Dührsen, Ulrich Hanoun, Christine Hüttmann, Andreas Richter, Julia Klapper, Wolfram Jauw, Yvonne W. S. Hoekstra, Otto S. de Vet, Henrica C. W. Boellaard, Ronald Zijlstra, Josée M. |
author_sort | Eertink, Jakoba J. |
collection | PubMed |
description | We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were extracted from the baseline positron emission tomography–computed tomography of 323 patients, which included maximum standardized uptake value (SUV(max)), SUV(peak), SUV(mean), metabolic tumor volume (MTV), total lesion glycolysis, and 12 dissemination features pertaining to distance, differences in uptake and volume between lesions, respectively. Logistic regression with backward feature selection was used to predict progression after 2 years. The predictive value of (1) International Prognostic Index (IPI); (2) IPI plus MYC; (3) IPI, MYC, and MTV; (4) radiomics; and (5) MYC plus radiomics models were tested using the cross-validated area under the curve (CV-AUC) and positive predictive values (PPVs). IPI yielded a CV-AUC of 0.65 ± 0.07 with a PPV of 29.6%. The IPI plus MYC model yielded a CV-AUC of 0.68 ± 0.08. IPI, MYC, and MTV yielded a CV-AUC of 0.74 ± 0.08. The highest model performance of the radiomics model was observed for MTV combined with the maximum distance between the largest lesion and another lesion, the maximum difference in SUV(peak) between 2 lesions, and the sum of distances between all lesions, yielding an improved CV-AUC of 0.77 ± 0.07. The same radiomics features were retained when adding MYC (CV-AUC, 0.77 ± 0.07). PPV was highest for the MYC plus radiomics model (50.0%) and increased by 20% compared with the IPI (29.6%). Adding radiomics features improved model performance and PPV and can, therefore, aid in identifying poor prognosis patients. |
format | Online Article Text |
id | pubmed-9841040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The American Society of Hematology |
record_format | MEDLINE/PubMed |
spelling | pubmed-98410402023-01-19 Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma Eertink, Jakoba J. Zwezerijnen, Gerben J. C. Wiegers, Sanne E. Pieplenbosch, Simone Chamuleau, Martine E. D. Lugtenburg, Pieternella J. de Jong, Daphne Ylstra, Bauke Mendeville, Matias Dührsen, Ulrich Hanoun, Christine Hüttmann, Andreas Richter, Julia Klapper, Wolfram Jauw, Yvonne W. S. Hoekstra, Otto S. de Vet, Henrica C. W. Boellaard, Ronald Zijlstra, Josée M. Blood Adv Lymphoid Neoplasia We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were extracted from the baseline positron emission tomography–computed tomography of 323 patients, which included maximum standardized uptake value (SUV(max)), SUV(peak), SUV(mean), metabolic tumor volume (MTV), total lesion glycolysis, and 12 dissemination features pertaining to distance, differences in uptake and volume between lesions, respectively. Logistic regression with backward feature selection was used to predict progression after 2 years. The predictive value of (1) International Prognostic Index (IPI); (2) IPI plus MYC; (3) IPI, MYC, and MTV; (4) radiomics; and (5) MYC plus radiomics models were tested using the cross-validated area under the curve (CV-AUC) and positive predictive values (PPVs). IPI yielded a CV-AUC of 0.65 ± 0.07 with a PPV of 29.6%. The IPI plus MYC model yielded a CV-AUC of 0.68 ± 0.08. IPI, MYC, and MTV yielded a CV-AUC of 0.74 ± 0.08. The highest model performance of the radiomics model was observed for MTV combined with the maximum distance between the largest lesion and another lesion, the maximum difference in SUV(peak) between 2 lesions, and the sum of distances between all lesions, yielding an improved CV-AUC of 0.77 ± 0.07. The same radiomics features were retained when adding MYC (CV-AUC, 0.77 ± 0.07). PPV was highest for the MYC plus radiomics model (50.0%) and increased by 20% compared with the IPI (29.6%). Adding radiomics features improved model performance and PPV and can, therefore, aid in identifying poor prognosis patients. The American Society of Hematology 2022-11-02 /pmc/articles/PMC9841040/ /pubmed/36306337 http://dx.doi.org/10.1182/bloodadvances.2022008629 Text en © 2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Lymphoid Neoplasia Eertink, Jakoba J. Zwezerijnen, Gerben J. C. Wiegers, Sanne E. Pieplenbosch, Simone Chamuleau, Martine E. D. Lugtenburg, Pieternella J. de Jong, Daphne Ylstra, Bauke Mendeville, Matias Dührsen, Ulrich Hanoun, Christine Hüttmann, Andreas Richter, Julia Klapper, Wolfram Jauw, Yvonne W. S. Hoekstra, Otto S. de Vet, Henrica C. W. Boellaard, Ronald Zijlstra, Josée M. Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma |
title | Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma |
title_full | Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma |
title_fullStr | Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma |
title_full_unstemmed | Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma |
title_short | Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma |
title_sort | baseline radiomics features and myc rearrangement status predict progression in aggressive b-cell lymphoma |
topic | Lymphoid Neoplasia |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841040/ https://www.ncbi.nlm.nih.gov/pubmed/36306337 http://dx.doi.org/10.1182/bloodadvances.2022008629 |
work_keys_str_mv | AT eertinkjakobaj baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT zwezerijnengerbenjc baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT wiegerssannee baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT pieplenboschsimone baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT chamuleaumartineed baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT lugtenburgpieternellaj baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT dejongdaphne baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT ylstrabauke baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT mendevillematias baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT duhrsenulrich baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT hanounchristine baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT huttmannandreas baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT richterjulia baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT klapperwolfram baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT jauwyvonnews baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT hoekstraottos baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT devethenricacw baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT boellaardronald baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT zijlstrajoseem baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma AT baselineradiomicsfeaturesandmycrearrangementstatuspredictprogressioninaggressivebcelllymphoma |