Cargando…
Towards interactive deep-learning for tumour segmentation in head and neck cancer radiotherapy
BACKGROUND AND PURPOSE: With deep-learning, gross tumour volume (GTV) auto-segmentation has substantially been improved, but still substantial manual corrections are needed. With interactive deep-learning (iDL), manual corrections can be used to update a deep-learning tool while delineating, minimis...
Autores principales: | Wei, Zixiang, Ren, Jintao, Korreman, Stine Sofia, Nijkamp, Jasper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841279/ https://www.ncbi.nlm.nih.gov/pubmed/36655215 http://dx.doi.org/10.1016/j.phro.2022.12.005 |
Ejemplares similares
-
Challenges and chances for deep-learning based target and organ at risk segmentation in radiotherapy of head and neck cancer
por: Nijkamp, Jasper
Publicado: (2022) -
Evaluating principal component analysis models for representing anatomical changes in head and neck radiotherapy
por: Argota-Perez, Raul, et al.
Publicado: (2022) -
Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy
por: Strijbis, Victor I. J., et al.
Publicado: (2022) -
Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study
por: Nikolov, Stanislav, et al.
Publicado: (2021) -
Deep learning auto-segmentation and automated treatment planning for trismus risk reduction in head and neck cancer radiotherapy
por: Thor, Maria, et al.
Publicado: (2021)