Cargando…
Quality assurance process within the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial for the fusion of electroanatomical mapping and radiotherapy planning imaging data in cardiac radioablation
A novel quality assurance process for electroanatomical mapping (EAM)-to-radiotherapy planning imaging (RTPI) target transport was assessed within the multi-center multi-platform framework of the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial. A stand-alone software (CARDIO-RT) was develop...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841340/ https://www.ncbi.nlm.nih.gov/pubmed/36655216 http://dx.doi.org/10.1016/j.phro.2022.12.003 |
Sumario: | A novel quality assurance process for electroanatomical mapping (EAM)-to-radiotherapy planning imaging (RTPI) target transport was assessed within the multi-center multi-platform framework of the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial. A stand-alone software (CARDIO-RT) was developed to enable platform independent registration of EAM and RTPI of the left ventricle (LV), based on pre-generated radiotherapy contours (RTC). LV-RTC were automatically segmented into the American-Heart-Association 17-segment-model and a manual 3D-3D method based on EAM 3D-geometry data and a semi-automated 2D-3D method based on EAM screenshot projections were developed. The quality of substrate transfer was evaluated in five clinical cases and the structural analyses showed substantial differences between manual target transfer and target transport using CARDIO-RT. |
---|