Cargando…
Deep Learning in Dermatology: A Systematic Review of Current Approaches, Outcomes, and Limitations
Artificial intelligence (AI) has recently made great advances in image classification and malignancy prediction in the field of dermatology. However, understanding the applicability of AI in clinical dermatology practice remains challenging owing to the variability of models, image data, database ch...
Autores principales: | Jeong, Hyeon Ki, Park, Christine, Henao, Ricardo, Kheterpal, Meenal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841357/ https://www.ncbi.nlm.nih.gov/pubmed/36655135 http://dx.doi.org/10.1016/j.xjidi.2022.100150 |
Ejemplares similares
-
Current Landscape of Generative Adversarial Networks for Facial Deidentification in Dermatology: Systematic Review and Evaluation
por: Park, Christine, et al.
Publicado: (2022) -
Lesion identification and malignancy prediction from clinical dermatological images
por: Xia, Meng, et al.
Publicado: (2022) -
Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations
por: Chan, Stephanie, et al.
Publicado: (2020) -
Use of convolutional neural networks in skin lesion analysis using real world image and non-image data
por: Wong, Samantha C., et al.
Publicado: (2022) -
Toxicity of Infiltrative Lidocaine in Dermatologic Surgery: Are Current Limits Valid?
por: Wang, Allison, et al.
Publicado: (2021)