Cargando…

Heterogeneous Electrochemical Ammonia Oxidation with a Ru-bda Oligomer Anchored on Graphitic Electrodes via CH−π Interactions

[Image: see text] Molecular catalysts can promote ammonia oxidation, providing mechanistic insights into the electrochemical N(2) cycle for a carbon-free fuel economy. We report the ammonia oxidation activity of carbon anodes functionalized with the oligomer {[Ru(II)(bda-κ-N(2)O(2))(4,4′-bpy)](10)(4...

Descripción completa

Detalles Bibliográficos
Autores principales: Beiler, Anna M., Denisiuk, Alisa, Holub, Jan, Sánchez-Baygual, Francisco-Javier, Gil-Sepulcre, Marcos, Ertem, Mehmed Z., Moonshiram, Dooshaye, Piccioni, Alberto, Llobet, Antoni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841602/
https://www.ncbi.nlm.nih.gov/pubmed/36660370
http://dx.doi.org/10.1021/acsenergylett.2c02483
Descripción
Sumario:[Image: see text] Molecular catalysts can promote ammonia oxidation, providing mechanistic insights into the electrochemical N(2) cycle for a carbon-free fuel economy. We report the ammonia oxidation activity of carbon anodes functionalized with the oligomer {[Ru(II)(bda-κ-N(2)O(2))(4,4′-bpy)](10)(4,4′-bpy)}, Rubda-10, where bda is [2,2′-bipyridine]-6,6′-dicarboxylate and 4,4′-bpy is 4,4′-bipyridine. Electrocatalytic studies in propylene carbonate demonstrate that the Ru-based hybrid anode used in a 3-electrode configuration transforms NH(3) to N(2) and H(2) in a 1:3 ratio with near-unity faradaic efficiency at an applied potential of 0.1 V vs Fc(+/0), reaching turnover numbers of 7500. X-ray absorption spectroscopic analysis after bulk electrolysis confirms the molecular integrity of the catalyst. Based on computational studies together with electrochemical evidence, ammonia nucleophilic attack is proposed as the primary pathway that leads to critical N–N bond formation.