Cargando…

Phosphorylation of TGIF2 represents a therapeutic target that drives EMT and metastasis of lung adenocarcinoma

BACKGROUND: TGF-β-induced factor homeobox 2 (TGIF2) is a transcription regulator that is phosphorylated by EGFR/ERK signaling. However, the functions of phosphorylated (p)-TGIF2 in cancer are largely unknown. Here, we investigated the roles of p-TGIF2 in promoting epithelial–mesenchymal transition (...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Renle, Wang, Chen, Liu, Jingjing, Wang, Keyan, Dai, Liping, Shen, Wenzhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841675/
https://www.ncbi.nlm.nih.gov/pubmed/36647029
http://dx.doi.org/10.1186/s12885-023-10535-9
Descripción
Sumario:BACKGROUND: TGF-β-induced factor homeobox 2 (TGIF2) is a transcription regulator that is phosphorylated by EGFR/ERK signaling. However, the functions of phosphorylated (p)-TGIF2 in cancer are largely unknown. Here, we investigated the roles of p-TGIF2 in promoting epithelial–mesenchymal transition (EMT) and metastasis in lung adenocarcinoma (LUAD). METHODS: In vitro and in vivo experiments were conducted to investigate the role of TGIF2 in LUAD EMT and metastasis. Dual-luciferase reporter and ChIP assays were employed to observe the direct transcriptional regulation of E-cadherin by TGIF2 and HDAC1. Co-immunoprecipitation was performed to identify the interaction between TGIF2 and HDAC1. RESULTS: Downregulating the expression of TGIF2 inhibited LUAD cell migration, EMT and metastasis in vitro and in vivo. Phosphorylation of TGIF2 by EGFR/ERK signaling was required for TGIF2-promoted LUAD EMT and metastasis since phosphorylation-deficient TGIF2 mutant lost these functions. Phosphorylation of TGIF2 was necessary to recruit HDAC1 to the E-cadherin promoter sequence and subsequently suppress E-cadherin transcription. Meanwhile, inhibition of HDAC1 repressed the TGIF2 phosphorylation-induced migration and EMT of LUAD cells. In xenograft mouse models, both inhibition of ERK and HDAC1 could significantly inhibited TGIF2-enhanced metastasis. Furthermore, TGIF2-positive staining was significantly correlated with E-cadherin-negative staining in human lung cancer specimens. CONCLUSIONS: Our study reveals the novel function of p-TGIF2 in promoting EMT and metastasis in LUAD; p-TGIF2 could be a potential therapeutic target to inhibit LUAD metastasis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-023-10535-9.