Cargando…
Grouped data with survey revision
INTRODUCTION: Surveys are common research tools, and questionnaires revisions are a common occurrence in longitudinal studies. Revisions can, at times, introduce systematic shifts in measures of interest. We formulate that questionnaire revision are a stochastic process with transition matrices. Thu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841728/ https://www.ncbi.nlm.nih.gov/pubmed/36647014 http://dx.doi.org/10.1186/s12874-023-01834-7 |
_version_ | 1784869957963612160 |
---|---|
author | Liang, Chung-Han Wang, Da-Wei Pan, Mei-Lien |
author_facet | Liang, Chung-Han Wang, Da-Wei Pan, Mei-Lien |
author_sort | Liang, Chung-Han |
collection | PubMed |
description | INTRODUCTION: Surveys are common research tools, and questionnaires revisions are a common occurrence in longitudinal studies. Revisions can, at times, introduce systematic shifts in measures of interest. We formulate that questionnaire revision are a stochastic process with transition matrices. Thus, revision shifts can be reduced by first estimating these transition matrices, which can be utilized in estimation of interested measures. MATERIALS AND METHOD: An ideal survey response model is defined by mapping between the true value of a participant’s response to an interval in the grouped data type scale. A population completed surveys multiple times, as modeled with multiple stochastic process. This included stochastic processes related to true values and intervals. While multiple factors contribute to changes in survey responses, here, we explored the method that can mitigate the effects of questionnaire revision. We proposed the Version Alignment Method (VAM), a data preprocessing tool, which can separate the transitions according to revisions from all transitions via solving an optimization problem and using the revision-related transitions to remove the revision effect. To verify VAM, we used simulation data to study the estimation error and a real life MJ dataset containing large amounts of long-term questionnaire responses with several questionnaire revisions to study its feasibility. RESULT: We compared the difference of the annual average between consecutive years. Without adjustment, the difference is 0.593 when the revision occurred, while VAM brought it down to 0.115, where difference between years without revision was in the 0.005, 0.125 range. Furthermore, our method rendered the responses to the same set of intervals, thus comparing the relative frequency of items before and after revisions became possible. The average estimation error in L infinity was 0.0044 which occupied the 95% CI which was constructed by bootstrap analysis. CONCLUSION: Questionnaire revisions can induce different response bias and information loss, thus causing inconsistencies in the estimated measures. Conventional methods can only partly remedy this issue. Our proposal, VAM, can estimate the aggregate difference of all revision-related systematic errors and can reduce the differences, thus reducing inconsistencies in the final estimations of longitudinal studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-023-01834-7. |
format | Online Article Text |
id | pubmed-9841728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-98417282023-01-17 Grouped data with survey revision Liang, Chung-Han Wang, Da-Wei Pan, Mei-Lien BMC Med Res Methodol Research INTRODUCTION: Surveys are common research tools, and questionnaires revisions are a common occurrence in longitudinal studies. Revisions can, at times, introduce systematic shifts in measures of interest. We formulate that questionnaire revision are a stochastic process with transition matrices. Thus, revision shifts can be reduced by first estimating these transition matrices, which can be utilized in estimation of interested measures. MATERIALS AND METHOD: An ideal survey response model is defined by mapping between the true value of a participant’s response to an interval in the grouped data type scale. A population completed surveys multiple times, as modeled with multiple stochastic process. This included stochastic processes related to true values and intervals. While multiple factors contribute to changes in survey responses, here, we explored the method that can mitigate the effects of questionnaire revision. We proposed the Version Alignment Method (VAM), a data preprocessing tool, which can separate the transitions according to revisions from all transitions via solving an optimization problem and using the revision-related transitions to remove the revision effect. To verify VAM, we used simulation data to study the estimation error and a real life MJ dataset containing large amounts of long-term questionnaire responses with several questionnaire revisions to study its feasibility. RESULT: We compared the difference of the annual average between consecutive years. Without adjustment, the difference is 0.593 when the revision occurred, while VAM brought it down to 0.115, where difference between years without revision was in the 0.005, 0.125 range. Furthermore, our method rendered the responses to the same set of intervals, thus comparing the relative frequency of items before and after revisions became possible. The average estimation error in L infinity was 0.0044 which occupied the 95% CI which was constructed by bootstrap analysis. CONCLUSION: Questionnaire revisions can induce different response bias and information loss, thus causing inconsistencies in the estimated measures. Conventional methods can only partly remedy this issue. Our proposal, VAM, can estimate the aggregate difference of all revision-related systematic errors and can reduce the differences, thus reducing inconsistencies in the final estimations of longitudinal studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-023-01834-7. BioMed Central 2023-01-16 /pmc/articles/PMC9841728/ /pubmed/36647014 http://dx.doi.org/10.1186/s12874-023-01834-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Liang, Chung-Han Wang, Da-Wei Pan, Mei-Lien Grouped data with survey revision |
title | Grouped data with survey revision |
title_full | Grouped data with survey revision |
title_fullStr | Grouped data with survey revision |
title_full_unstemmed | Grouped data with survey revision |
title_short | Grouped data with survey revision |
title_sort | grouped data with survey revision |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841728/ https://www.ncbi.nlm.nih.gov/pubmed/36647014 http://dx.doi.org/10.1186/s12874-023-01834-7 |
work_keys_str_mv | AT liangchunghan groupeddatawithsurveyrevision AT wangdawei groupeddatawithsurveyrevision AT panmeilien groupeddatawithsurveyrevision |