Cargando…
DeepEZ: A Graph Convolutional Network for Automated Epileptogenic Zone Localization From Resting-State fMRI Connectivity
OBJECTIVE: Epileptogenic zone (EZ) localization is a crucial step during diagnostic work up and therapeutic planning in medication refractory epilepsy. In this paper, we present the first deep learning approach to localize the EZ based on resting-state fMRI (rs-fMRI) data. METHODS: Our network, call...
Autores principales: | Nandakumar, Naresh, Hsu, David, Ahmed, Raheel, Venkataraman, Archana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841829/ https://www.ncbi.nlm.nih.gov/pubmed/35776823 http://dx.doi.org/10.1109/TBME.2022.3187942 |
Ejemplares similares
-
Identification of the Epileptogenic Zone from Stereo-EEG Signals: A Connectivity-Graph Theory Approach
por: Panzica, Ferruccio, et al.
Publicado: (2013) -
Automated long‐term EEG analysis to localize the epileptogenic zone
por: van Mierlo, Pieter, et al.
Publicado: (2017) -
Graph convolutional network for fMRI analysis based on connectivity neighborhood
por: Wang, Lebo, et al.
Publicado: (2021) -
Dynamic Network Connectivity Analysis to Identify Epileptogenic Zones Based on Stereo-Electroencephalography
por: Mao, Jun-Wei, et al.
Publicado: (2016) -
The Concept of Drug-Resistant Epileptogenic Zone
por: Zhang, Chunbo, et al.
Publicado: (2019)