Cargando…
Improving drug discovery through parallelism
Compound identification in ligand-based virtual screening is limited by two key issues: the quality and the time needed to obtain predictions. In this sense, we designed OptiPharm, an algorithm that obtained excellent results in improving the sequential methods in the literature. In this work, we go...
Autores principales: | García, Jerónimo S., Puertas-Martín, Savíns, Redondo, Juana L., Moreno, Juan José, Ortigosa, Pilar M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842220/ https://www.ncbi.nlm.nih.gov/pubmed/36687309 http://dx.doi.org/10.1007/s11227-022-05014-0 |
Ejemplares similares
-
A two-layer mono-objective algorithm based on guided optimization to reduce the computational cost in virtual screening
por: Ferrández, Miriam R., et al.
Publicado: (2022) -
Black-box and surrogate optimization for tuning spiking neural models of striatum plasticity
por: Cruz, Nicolás C., et al.
Publicado: (2022) -
OptiPharm: An evolutionary algorithm to compare shape similarity
por: Puertas-Martín, S., et al.
Publicado: (2019) -
PHDs-seq: a large-scale phenotypic screening method for drug discovery through parallel multi-readout quantification
por: Li, Jun, et al.
Publicado: (2023) -
Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets
por: Swanton, Charles, et al.
Publicado: (2010)