Cargando…
A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images
Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure sh...
Autores principales: | Ullah, Ihsan, Ali, Farman, Shah, Babar, El-Sappagh, Shaker, Abuhmed, Tamer, Park, Sang Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842654/ https://www.ncbi.nlm.nih.gov/pubmed/36646735 http://dx.doi.org/10.1038/s41598-023-27815-w |
Ejemplares similares
-
Author Correction: A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images
por: Ullah, Ihsan, et al.
Publicado: (2023) -
Comprehensive Survey of Using Machine Learning in the COVID-19 Pandemic
por: El-Rashidy, Nora, et al.
Publicado: (2021) -
Lung Field Segmentation in Chest X-ray Images Using Superpixel Resizing and Encoder–Decoder Segmentation Networks
por: Lee, Chien-Cheng, et al.
Publicado: (2022) -
Encoder-decoder models for chest X-ray report generation perform no better than unconditioned baselines
por: Babar, Zaheer, et al.
Publicado: (2021) -
The Role of Medication Data to Enhance the Prediction of Alzheimer's Progression Using Machine Learning
por: El-Sappagh, Shaker, et al.
Publicado: (2021)