Cargando…
Decoding of the speech envelope from EEG using the VLAAI deep neural network
To investigate the processing of speech in the brain, commonly simple linear models are used to establish a relationship between brain signals and speech features. However, these linear models are ill-equipped to model a highly-dynamic, complex non-linear system like the brain, and they often requir...
Autores principales: | Accou, Bernd, Vanthornhout, Jonas, hamme, Hugo Van, Francart, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842721/ https://www.ncbi.nlm.nih.gov/pubmed/36646740 http://dx.doi.org/10.1038/s41598-022-27332-2 |
Ejemplares similares
-
Effect of number and placement of EEG electrodes on measurement of neural tracking of speech
por: Montoya-Martínez, Jair, et al.
Publicado: (2021) -
Effect of Task and Attention on Neural Tracking of Speech
por: Vanthornhout, Jonas, et al.
Publicado: (2019) -
Stimulus-aware spatial filtering for single-trial neural response and temporal response function estimation in high-density EEG with applications in auditory research
por: Das, Neetha, et al.
Publicado: (2020) -
Heard or Understood? Neural Tracking of Language Features in a Comprehensible Story, an Incomprehensible Story and a Word List
por: Gillis, Marlies, et al.
Publicado: (2023) -
Deep learning with convolutional neural networks for EEG decoding and visualization
por: Schirrmeister, Robin Tibor, et al.
Publicado: (2017)