Cargando…
Multi-modal artificial intelligence for the combination of automated 3D breast ultrasound and mammograms in a population of women with predominantly dense breasts
OBJECTIVES: To assess the stand-alone and combined performance of artificial intelligence (AI) detection systems for digital mammography (DM) and automated 3D breast ultrasound (ABUS) in detecting breast cancer in women with dense breasts. METHODS: 430 paired cases of DM and ABUS examinations from a...
Autores principales: | Tan, Tao, Rodriguez-Ruiz, Alejandro, Zhang, Tianyu, Xu, Lin, Beets-Tan, Regina G. H., Shen, Yingzhao, Karssemeijer, Nico, Xu, Jun, Mann, Ritse M., Bao, Lingyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842825/ https://www.ncbi.nlm.nih.gov/pubmed/36645507 http://dx.doi.org/10.1186/s13244-022-01352-y |
Ejemplares similares
-
Validation of radiologists’ findings by computer-aided
detection (CAD) software in breast cancer detection with automated 3D
breast ultrasound: a concept study in implementation of artificial
intelligence software
por: van Zelst, Jan CM, et al.
Publicado: (2019) -
Volumetric Breast Density Estimation from Full-Field Digital Mammograms: A Validation Study
por: Gubern-Mérida, Albert, et al.
Publicado: (2014) -
Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts
por: van Zelst, Jan C. M., et al.
Publicado: (2018) -
Exploiting the Dixon Method for a Robust Breast and Fibro-Glandular Tissue Segmentation in Breast MRI
por: Samperna, Riccardo, et al.
Publicado: (2022) -
Predicting breast cancer types on and beyond molecular level in a multi-modal fashion
por: Zhang, Tianyu, et al.
Publicado: (2023)