Cargando…
Spatial response resampling (SR(2)): Accounting for the spatial point spread function in hyperspectral image resampling
With the increased availability of hyperspectral imaging (HSI) data at various scales (0.03–30 m), the role of simulation is becoming increasingly important in data analysis and applications. There are few commercially available tools to spatially degrade imagery based on the spatial response of a c...
Autores principales: | Inamdar, Deep, Kalacska, Margaret, Darko, Patrick Osei, Arroyo-Mora, J. Pablo, Leblanc, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842868/ https://www.ncbi.nlm.nih.gov/pubmed/36660342 http://dx.doi.org/10.1016/j.mex.2023.101998 |
Ejemplares similares
-
Implementation of the directly-georeferenced hyperspectral point cloud
por: Inamdar, Deep, et al.
Publicado: (2021) -
Fingerprint resampling: A generic method for efficient resampling
por: Mestdagh, Merijn, et al.
Publicado: (2015) -
Water column compensation workflow for hyperspectral imaging data
por: Inamdar, Deep, et al.
Publicado: (2021) -
PYTAF: A Python Tool for Spatially Resampling Earth Observation Data
por: Zhao, Guangyu, et al.
Publicado: (2020) -
Ten ensembles with hourly high spatial resolution datasets for severe precipitation events in Egypt
por: Eltahan, Muhammed, et al.
Publicado: (2020)