Cargando…
DBSegment: Fast and robust segmentation of deep brain structures considering domain generalization
Segmenting deep brain structures from magnetic resonance images is important for patient diagnosis, surgical planning, and research. Most current state‐of‐the‐art solutions follow a segmentation‐by‐registration approach, where subject magnetic resonance imaging (MRIs) are mapped to a template with w...
Autores principales: | Baniasadi, Mehri, Petersen, Mikkel V., Gonçalves, Jorge, Horn, Andreas, Vlasov, Vanja, Hertel, Frank, Husch, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842883/ https://www.ncbi.nlm.nih.gov/pubmed/36250712 http://dx.doi.org/10.1002/hbm.26097 |
Ejemplares similares
-
PaCER - A fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation
por: Husch, Andreas, et al.
Publicado: (2017) -
Machine learning models for diagnosis and prognosis of Parkinson's disease using brain imaging: general overview, main challenges, and future directions
por: Garcia Santa Cruz, Beatriz, et al.
Publicado: (2023) -
Domain-specific cues improve robustness of deep learning-based segmentation of CT volumes
por: Kloenne, Marie, et al.
Publicado: (2020) -
Using automated electrode localization to guide stimulation management in DBS
por: Petersen, Mikkel V., et al.
Publicado: (2018) -
Generalising from conventional pipelines using deep learning in high-throughput screening workflows
por: Garcia Santa Cruz, Beatriz, et al.
Publicado: (2022)