Cargando…
Modelling the depth‐dependent VASO and BOLD responses in human primary visual cortex
Functional magnetic resonance imaging (fMRI) using a blood‐oxygenation‐level‐dependent (BOLD) contrast is a common method for studying human brain function noninvasively. Gradient‐echo (GRE) BOLD is highly sensitive to the blood oxygenation change in blood vessels; however, the spatial signal specif...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842911/ https://www.ncbi.nlm.nih.gov/pubmed/36189837 http://dx.doi.org/10.1002/hbm.26094 |
_version_ | 1784870255959474176 |
---|---|
author | Akbari, Atena Bollmann, Saskia Ali, Tonima S. Barth, Markus |
author_facet | Akbari, Atena Bollmann, Saskia Ali, Tonima S. Barth, Markus |
author_sort | Akbari, Atena |
collection | PubMed |
description | Functional magnetic resonance imaging (fMRI) using a blood‐oxygenation‐level‐dependent (BOLD) contrast is a common method for studying human brain function noninvasively. Gradient‐echo (GRE) BOLD is highly sensitive to the blood oxygenation change in blood vessels; however, the spatial signal specificity can be degraded due to signal leakage from activated lower layers to superficial layers in depth‐dependent (also called laminar or layer‐specific) fMRI. Alternatively, physiological variables such as cerebral blood volume using the VAscular‐Space‐Occupancy (VASO) contrast have shown higher spatial specificity compared to BOLD. To better understand the physiological mechanisms such as blood volume and oxygenation changes and to interpret the measured depth‐dependent responses, models are needed which reflect vascular properties at this scale. For this purpose, we extended and modified the “cortical vascular model” previously developed to predict layer‐specific BOLD signal changes in human primary visual cortex to also predict a layer‐specific VASO response. To evaluate the model, we compared the predictions with experimental results of simultaneous VASO and BOLD measurements in a group of healthy participants. Fitting the model to our experimental data provided an estimate of CBV change in different vascular compartments upon neural activity. We found that stimulus‐evoked CBV change mainly occurs in small arterioles, capillaries, and intracortical arteries and that the contribution from venules and ICVs is smaller. Our results confirm that VASO is less susceptible to large vessel effects compared to BOLD, as blood volume changes in intracortical arteries did not substantially affect the resulting depth‐dependent VASO profiles, whereas depth‐dependent BOLD profiles showed a bias towards signal contributions from intracortical veins. |
format | Online Article Text |
id | pubmed-9842911 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98429112023-01-23 Modelling the depth‐dependent VASO and BOLD responses in human primary visual cortex Akbari, Atena Bollmann, Saskia Ali, Tonima S. Barth, Markus Hum Brain Mapp Research Articles Functional magnetic resonance imaging (fMRI) using a blood‐oxygenation‐level‐dependent (BOLD) contrast is a common method for studying human brain function noninvasively. Gradient‐echo (GRE) BOLD is highly sensitive to the blood oxygenation change in blood vessels; however, the spatial signal specificity can be degraded due to signal leakage from activated lower layers to superficial layers in depth‐dependent (also called laminar or layer‐specific) fMRI. Alternatively, physiological variables such as cerebral blood volume using the VAscular‐Space‐Occupancy (VASO) contrast have shown higher spatial specificity compared to BOLD. To better understand the physiological mechanisms such as blood volume and oxygenation changes and to interpret the measured depth‐dependent responses, models are needed which reflect vascular properties at this scale. For this purpose, we extended and modified the “cortical vascular model” previously developed to predict layer‐specific BOLD signal changes in human primary visual cortex to also predict a layer‐specific VASO response. To evaluate the model, we compared the predictions with experimental results of simultaneous VASO and BOLD measurements in a group of healthy participants. Fitting the model to our experimental data provided an estimate of CBV change in different vascular compartments upon neural activity. We found that stimulus‐evoked CBV change mainly occurs in small arterioles, capillaries, and intracortical arteries and that the contribution from venules and ICVs is smaller. Our results confirm that VASO is less susceptible to large vessel effects compared to BOLD, as blood volume changes in intracortical arteries did not substantially affect the resulting depth‐dependent VASO profiles, whereas depth‐dependent BOLD profiles showed a bias towards signal contributions from intracortical veins. John Wiley & Sons, Inc. 2022-10-03 /pmc/articles/PMC9842911/ /pubmed/36189837 http://dx.doi.org/10.1002/hbm.26094 Text en © 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Akbari, Atena Bollmann, Saskia Ali, Tonima S. Barth, Markus Modelling the depth‐dependent VASO and BOLD responses in human primary visual cortex |
title | Modelling the depth‐dependent VASO and BOLD responses in human primary visual cortex |
title_full | Modelling the depth‐dependent VASO and BOLD responses in human primary visual cortex |
title_fullStr | Modelling the depth‐dependent VASO and BOLD responses in human primary visual cortex |
title_full_unstemmed | Modelling the depth‐dependent VASO and BOLD responses in human primary visual cortex |
title_short | Modelling the depth‐dependent VASO and BOLD responses in human primary visual cortex |
title_sort | modelling the depth‐dependent vaso and bold responses in human primary visual cortex |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842911/ https://www.ncbi.nlm.nih.gov/pubmed/36189837 http://dx.doi.org/10.1002/hbm.26094 |
work_keys_str_mv | AT akbariatena modellingthedepthdependentvasoandboldresponsesinhumanprimaryvisualcortex AT bollmannsaskia modellingthedepthdependentvasoandboldresponsesinhumanprimaryvisualcortex AT alitonimas modellingthedepthdependentvasoandboldresponsesinhumanprimaryvisualcortex AT barthmarkus modellingthedepthdependentvasoandboldresponsesinhumanprimaryvisualcortex |