Cargando…

Deep multimodal predictome for studying mental disorders

Characterizing neuropsychiatric disorders is challenging due to heterogeneity in the population. We propose combining structural and functional neuroimaging and genomic data in a multimodal classification framework to leverage their complementary information. Our objectives are two‐fold (i) to impro...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahaman, Md Abdur, Chen, Jiayu, Fu, Zening, Lewis, Noah, Iraji, Armin, van Erp, Theo G. M., Calhoun, Vince D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842924/
https://www.ncbi.nlm.nih.gov/pubmed/36574598
http://dx.doi.org/10.1002/hbm.26077
Descripción
Sumario:Characterizing neuropsychiatric disorders is challenging due to heterogeneity in the population. We propose combining structural and functional neuroimaging and genomic data in a multimodal classification framework to leverage their complementary information. Our objectives are two‐fold (i) to improve the classification of disorders and (ii) to introspect the concepts learned to explore underlying neural and biological mechanisms linked to mental disorders. Previous multimodal studies have focused on naïve neural networks, mostly perceptron, to learn modality‐wise features and often assume equal contribution from each modality. Our focus is on the development of neural networks for feature learning and implementing an adaptive control unit for the fusion phase. Our mid fusion with attention model includes a multilayer feed‐forward network, an autoencoder, a bi‐directional long short‐term memory unit with attention as the features extractor, and a linear attention module for controlling modality‐specific influence. The proposed model acquired 92% (p < .0001) accuracy in schizophrenia prediction, outperforming several other state‐of‐the‐art models applied to unimodal or multimodal data. Post hoc feature analyses uncovered critical neural features and genes/biological pathways associated with schizophrenia. The proposed model effectively combines multimodal neuroimaging and genomics data for predicting mental disorders. Interpreting salient features identified by the model may advance our understanding of their underlying etiological mechanisms.