Cargando…
Deep multimodal predictome for studying mental disorders
Characterizing neuropsychiatric disorders is challenging due to heterogeneity in the population. We propose combining structural and functional neuroimaging and genomic data in a multimodal classification framework to leverage their complementary information. Our objectives are two‐fold (i) to impro...
Autores principales: | Rahaman, Md Abdur, Chen, Jiayu, Fu, Zening, Lewis, Noah, Iraji, Armin, van Erp, Theo G. M., Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842924/ https://www.ncbi.nlm.nih.gov/pubmed/36574598 http://dx.doi.org/10.1002/hbm.26077 |
Ejemplares similares
-
Correction to “Deep multimodal predictome for studying mental disorders”
Publicado: (2023) -
Towards a brain‐based predictome of mental illness
por: Rashid, Barnaly, et al.
Publicado: (2020) -
On the holobiont ‘predictome’ of immunocompetence in pigs
por: Calle-García, Joan, et al.
Publicado: (2023) -
Tools of the trade: estimating time-varying connectivity patterns from fMRI data
por: Iraji, Armin, et al.
Publicado: (2020) -
In search of multimodal brain alterations in Alzheimer's and Binswanger's disease
por: Fu, Zening, et al.
Publicado: (2019)