Cargando…

Remifentanil modulates the TLR4‑mediated MMP‑9/TIMP1 balance and NF‑κB/STAT3 signaling in LPS‑induced A549 cells

Remifentanil is a widely used in general anesthetic that has been found to suppress the inflammatory response in aortic endothelial cells. Therefore, it was hypothesized that remifentanil can inhibit inflammatory dysfunction in lung epithelial cells to alleviate acute lung injury (ALI). The present...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Jun, Zhang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842940/
https://www.ncbi.nlm.nih.gov/pubmed/36684659
http://dx.doi.org/10.3892/etm.2022.11778
_version_ 1784870266081378304
author Chang, Jun
Zhang, Wei
author_facet Chang, Jun
Zhang, Wei
author_sort Chang, Jun
collection PubMed
description Remifentanil is a widely used in general anesthetic that has been found to suppress the inflammatory response in aortic endothelial cells. Therefore, it was hypothesized that remifentanil can inhibit inflammatory dysfunction in lung epithelial cells to alleviate acute lung injury (ALI). The present study aimed to examine the effects of remifentanil on inflammatory injury, MMP-9/tissue inhibitor of metalloproteinase 1 (TIMP1) balance and the potential associated regulatory pathways in A549 cells. Lipopolysaccharide (LPS) was used to treat A549 cells to establish ALI models. The possible roles of different concentrations of remifentanil in cell viability was then determined by CCK-8 and Lactate dehydrogenase release assay. Apoptosis was assessed by flow cytometry analysis and western blotting. Inflammation and oxidative stress were measured by ELISA and corresponding kits respectively. Subsequently, the effects of remifentanil on Toll-like receptor 4 (TLR4) expression and the MMP-9/TIMP1 balance were assessed by western blotting and ELISA. In addition, the effects of remifentanil on NF-κB/STAT3 signaling were evaluated by measuring the protein expression levels of associated pathway components and the degree of NF-κB nuclear translocation using western blotting and immunofluorescence respectively. Remifentanil was found to increase cell viability whilst reducing apoptosis, inflammation and oxidative stress in the LPS-treated cells. In addition, TLR4 inhibitor CLI-095 suppressed MMP-9 expression and secretion while potentiating TIMP1 expression and secretion in LPS-challenged cells. Remifentanil treatment was able to modulate TLR4 to mediate LPS-induced MMP-9/TIMP1 imbalance and suppress the phosphorylation of NF-κB/STAT3 signaling components, in addition to inhibiting NF-κB nuclear translocation. Taken together, remifentanil downregulated TLR4 to reduce MMP-9/TIMP1 imbalance to inhibit inflammatory dysfunction in LPS-treated A549 cells, by regulating NF-κB/STAT3 signaling.
format Online
Article
Text
id pubmed-9842940
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-98429402023-01-20 Remifentanil modulates the TLR4‑mediated MMP‑9/TIMP1 balance and NF‑κB/STAT3 signaling in LPS‑induced A549 cells Chang, Jun Zhang, Wei Exp Ther Med Articles Remifentanil is a widely used in general anesthetic that has been found to suppress the inflammatory response in aortic endothelial cells. Therefore, it was hypothesized that remifentanil can inhibit inflammatory dysfunction in lung epithelial cells to alleviate acute lung injury (ALI). The present study aimed to examine the effects of remifentanil on inflammatory injury, MMP-9/tissue inhibitor of metalloproteinase 1 (TIMP1) balance and the potential associated regulatory pathways in A549 cells. Lipopolysaccharide (LPS) was used to treat A549 cells to establish ALI models. The possible roles of different concentrations of remifentanil in cell viability was then determined by CCK-8 and Lactate dehydrogenase release assay. Apoptosis was assessed by flow cytometry analysis and western blotting. Inflammation and oxidative stress were measured by ELISA and corresponding kits respectively. Subsequently, the effects of remifentanil on Toll-like receptor 4 (TLR4) expression and the MMP-9/TIMP1 balance were assessed by western blotting and ELISA. In addition, the effects of remifentanil on NF-κB/STAT3 signaling were evaluated by measuring the protein expression levels of associated pathway components and the degree of NF-κB nuclear translocation using western blotting and immunofluorescence respectively. Remifentanil was found to increase cell viability whilst reducing apoptosis, inflammation and oxidative stress in the LPS-treated cells. In addition, TLR4 inhibitor CLI-095 suppressed MMP-9 expression and secretion while potentiating TIMP1 expression and secretion in LPS-challenged cells. Remifentanil treatment was able to modulate TLR4 to mediate LPS-induced MMP-9/TIMP1 imbalance and suppress the phosphorylation of NF-κB/STAT3 signaling components, in addition to inhibiting NF-κB nuclear translocation. Taken together, remifentanil downregulated TLR4 to reduce MMP-9/TIMP1 imbalance to inhibit inflammatory dysfunction in LPS-treated A549 cells, by regulating NF-κB/STAT3 signaling. D.A. Spandidos 2022-12-30 /pmc/articles/PMC9842940/ /pubmed/36684659 http://dx.doi.org/10.3892/etm.2022.11778 Text en Copyright: © Chang et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Chang, Jun
Zhang, Wei
Remifentanil modulates the TLR4‑mediated MMP‑9/TIMP1 balance and NF‑κB/STAT3 signaling in LPS‑induced A549 cells
title Remifentanil modulates the TLR4‑mediated MMP‑9/TIMP1 balance and NF‑κB/STAT3 signaling in LPS‑induced A549 cells
title_full Remifentanil modulates the TLR4‑mediated MMP‑9/TIMP1 balance and NF‑κB/STAT3 signaling in LPS‑induced A549 cells
title_fullStr Remifentanil modulates the TLR4‑mediated MMP‑9/TIMP1 balance and NF‑κB/STAT3 signaling in LPS‑induced A549 cells
title_full_unstemmed Remifentanil modulates the TLR4‑mediated MMP‑9/TIMP1 balance and NF‑κB/STAT3 signaling in LPS‑induced A549 cells
title_short Remifentanil modulates the TLR4‑mediated MMP‑9/TIMP1 balance and NF‑κB/STAT3 signaling in LPS‑induced A549 cells
title_sort remifentanil modulates the tlr4‑mediated mmp‑9/timp1 balance and nf‑κb/stat3 signaling in lps‑induced a549 cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842940/
https://www.ncbi.nlm.nih.gov/pubmed/36684659
http://dx.doi.org/10.3892/etm.2022.11778
work_keys_str_mv AT changjun remifentanilmodulatesthetlr4mediatedmmp9timp1balanceandnfkbstat3signalinginlpsinduceda549cells
AT zhangwei remifentanilmodulatesthetlr4mediatedmmp9timp1balanceandnfkbstat3signalinginlpsinduceda549cells