Cargando…
On the importance of structural equivalence in temporal networks for epidemic forecasting
Understanding how a disease spreads in a population is a first step to preparing for future epidemics, and machine learning models are a useful tool to analyze the spreading process of infectious diseases. For effective predictions of these spreading processes, node embeddings are used to encode net...
Autores principales: | Kister, Pauline, Tonetto, Leonardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843108/ https://www.ncbi.nlm.nih.gov/pubmed/36650269 http://dx.doi.org/10.1038/s41598-023-28126-w |
Ejemplares similares
-
Interpretable Temporal Attention Network for COVID-19 forecasting
por: Zhou, Binggui, et al.
Publicado: (2022) -
Notes on Making Epidemic Forecasts
por: Rogers, Leonard
Publicado: (1933) -
Recalibrating probabilistic forecasts of epidemics
por: Rumack, Aaron, et al.
Publicado: (2022) -
Discrete time forecasting of epidemics
por: Villela, Daniel A.M.
Publicado: (2020) -
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023)