Cargando…
Finding undiagnosed patients with hepatitis C virus: an application of machine learning to US ambulatory electronic medical records
AIMS: To develop and validate a machine learning (ML) algorithm to identify undiagnosed hepatitis C virus (HCV) patients, in order to facilitate prioritisation of patients for targeted HCV screening. METHODS: This retrospective study used ambulatory electronic medical records (EMR) from January 2015...
Autores principales: | Rigg, John, Doyle, Orla, McDonogh, Niamh, Leavitt, Nadea, Ali, Rehan, Son, Annie, Kreter, Bruce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843171/ https://www.ncbi.nlm.nih.gov/pubmed/36639190 http://dx.doi.org/10.1136/bmjhci-2022-100651 |
Ejemplares similares
-
Finding undiagnosed patients with hepatitis C infection: an application of artificial intelligence to patient claims data
por: Doyle, Orla M., et al.
Publicado: (2020) -
Machine learning using longitudinal prescription and medical claims for the detection of non-alcoholic steatohepatitis (NASH)
por: Yasar, Ozge, et al.
Publicado: (2022) -
The Influence of Extreme Heat on Police and Fire Department Services in 23 U.S. Cities
por: Williams, Augusta, et al.
Publicado: (2020) -
Obesity and Undiagnosed Diabetes in the U.S.
por: Wee, Christina C., et al.
Publicado: (2008) -
Applying Machine Learning Techniques to Identify Undiagnosed Patients with Exocrine Pancreatic Insufficiency
por: Pyenson, Bruce, et al.
Publicado: (2019)