Cargando…
Length biases in single-cell RNA sequencing of pre-mRNA
Single-cell RNA sequencing data can be modeled using Markov chains to yield genome-wide insights into transcriptional physics. However, quantitative inference with such data requires careful assessment of noise sources. We find that long pre-mRNA transcripts are over-represented in sequencing data....
Autores principales: | Gorin, Gennady, Pachter, Lior |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843228/ https://www.ncbi.nlm.nih.gov/pubmed/36660179 http://dx.doi.org/10.1016/j.bpr.2022.100097 |
Ejemplares similares
-
Biophysical modeling with variational autoencoders for bimodal, single-cell RNA sequencing data
por: Carilli, Maria, et al.
Publicado: (2023) -
RNA velocity unraveled
por: Gorin, Gennady, et al.
Publicado: (2022) -
Biophysically Interpretable Inference of Cell Types from Multimodal Sequencing Data
por: Chari, Tara, et al.
Publicado: (2023) -
Protein velocity and acceleration from single-cell multiomics experiments
por: Gorin, Gennady, et al.
Publicado: (2020) -
Studying stochastic systems biology of the cell with single-cell genomics data
por: Gorin, Gennady, et al.
Publicado: (2023)