Cargando…
Value of genomics- and radiomics-based machine learning models in the identification of breast cancer molecular subtypes: a systematic review and meta-analysis
BACKGROUND: In the era of precision therapy, early classification of breast cancer (BRCA) molecular subtypes has clinical significance for disease management and prognosis. We explored the accuracy of machine learning (ML) models for early classification of BRCA molecular subtypes through a systemat...
Autores principales: | Zhang, Yiwen, Li, Guofeng, Bian, Wenqing, Bai, Yuzhuo, He, Shuangyan, Liu, Yulian, Liu, Huan, Liu, Jiaqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843333/ https://www.ncbi.nlm.nih.gov/pubmed/36660694 http://dx.doi.org/10.21037/atm-22-5986 |
Ejemplares similares
-
Using CT radiomic features based on machine learning models to subtype adrenal adenoma
por: Qi, Shouliang, et al.
Publicado: (2023) -
Machine Learning-Based Analysis of MR Multiparametric Radiomics for the Subtype Classification of Breast Cancer
por: Xie, Tianwen, et al.
Publicado: (2019) -
CT-Based Radiomics Signature With Machine Learning Predicts MYCN Amplification in Pediatric Abdominal Neuroblastoma
por: Chen, Xin, et al.
Publicado: (2021) -
Machine learning identification and immune infiltration of disulfidptosis‐related Alzheimer's disease molecular subtypes
por: Zhu, Yidong, et al.
Publicado: (2023) -
Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning
por: Sheng, Weiyong, et al.
Publicado: (2022)