Cargando…

Protection from acute lung injury by a peptide designed to inhibit the voltage-gated proton channel

There are no targeted medical therapies for Acute Lung Injury (ALI) or its most severe form acute respiratory distress syndrome (ARDS). Infections are the most common cause of ALI/ARDS and these disorders present clinically with alveolar inflammation and barrier dysfunction due to the influx of neut...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Ruiming, Lopez, Benjamin, Schwingshackl, Andreas, Goldstein, Steve A.N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843441/
https://www.ncbi.nlm.nih.gov/pubmed/36660473
http://dx.doi.org/10.1016/j.isci.2022.105901
Descripción
Sumario:There are no targeted medical therapies for Acute Lung Injury (ALI) or its most severe form acute respiratory distress syndrome (ARDS). Infections are the most common cause of ALI/ARDS and these disorders present clinically with alveolar inflammation and barrier dysfunction due to the influx of neutrophils and inflammatory mediator secretion. We designed the C6 peptide to inhibit voltage-gated proton channels (Hv1) and demonstrated that it suppressed the release of reactive oxygen species (ROS) and proteases from neutrophils in vitro. We now show that intravenous C6 counteracts bacterial lipopolysaccharide (LPS)-induced ALI in mice, and suppresses the accumulation of neutrophils, ROS, and proinflammatory cytokines in bronchoalveolar lavage fluid. Confirming the salutary effects of C6 are via Hv1, genetic deletion of the channel similarly protects mice from LPS-induced ALI. This report reveals that Hv1 is a key regulator of ALI, that Hv1 is a druggable target, and that C6 is a viable agent to treat ALI/ARDS.