Cargando…
Prediction of contraceptive discontinuation among reproductive-age women in Ethiopia using Ethiopian Demographic and Health Survey 2016 Dataset: A Machine Learning Approach
BACKGROUND: Globally, 38% of contraceptive users discontinue the use of a method within the first twelve months. In Ethiopia, about 35% of contraceptive users also discontinue within twelve months. Discontinuation reduces contraceptive coverage, family planning program effectiveness and contributes...
Autores principales: | Kebede, Shimels Derso, Sebastian, Yakub, Yeneneh, Abraham, Chanie, Ashenafi Fentahun, Melaku, Mequannent Sharew, Walle, Agmasie Damtew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843668/ https://www.ncbi.nlm.nih.gov/pubmed/36650511 http://dx.doi.org/10.1186/s12911-023-02102-w |
Ejemplares similares
-
Awareness and readiness of mental healthcare providers to implement telemental health services and associated factors at public referral hospitals in Addis Ababa City, Ethiopia
por: Adem, Jibril Bashir, et al.
Publicado: (2023) -
Spatial and multilevel analysis of sanitation service access and related factors among households in Ethiopia: Using 2019 Ethiopian national dataset
por: Demsash, Addisalem Workie, et al.
Publicado: (2023) -
Machine learning to predict virological failure among HIV patients on antiretroviral therapy in the University of Gondar Comprehensive and Specialized Hospital, in Amhara Region, Ethiopia, 2022
por: Mamo, Daniel Niguse, et al.
Publicado: (2023) -
Machine learning modeling for identifying predictors of unmet need for family planning among married/in-union women in Ethiopia: Evidence from performance monitoring and accountability (PMA) survey 2019 dataset
por: Kebede, Shimels Derso, et al.
Publicado: (2023) -
Predicting healthcare professionals’ acceptance towards electronic personal health record systems in a resource-limited setting: using modified technology acceptance model
por: Walle, Agmasie Damtew, et al.
Publicado: (2023)