Cargando…

Saroglitazar suppresses the hepatocellular carcinoma induced by intraperitoneal injection of diethylnitrosamine in C57BL/6 mice fed on choline deficient, l-amino acid- defined, high-fat diet

BACKGROUND: Saroglitazar is a novel PPAR-α/γ agonist with predominant PPAR-α activity. In various preclinical models, saroglitazar has been shown to prevent & reverse symptoms of NASH. In view of these observations, and the fact that NASH is a progressive disease leading to HCC, we hypothesized...

Descripción completa

Detalles Bibliográficos
Autores principales: Giri, Suresh R., Bhoi, Bibhuti, Trivedi, Chitrang, Rath, Akshyaya, Rathod, Rohan, Sharma, Anish, Ranvir, Ramchandra, Kadam, Shekhar, Ingale, Kailash, Patel, Hiren, Nyska, Abraham, Jain, Mukul R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843913/
https://www.ncbi.nlm.nih.gov/pubmed/36650455
http://dx.doi.org/10.1186/s12885-023-10530-0
Descripción
Sumario:BACKGROUND: Saroglitazar is a novel PPAR-α/γ agonist with predominant PPAR-α activity. In various preclinical models, saroglitazar has been shown to prevent & reverse symptoms of NASH. In view of these observations, and the fact that NASH is a progressive disease leading to HCC, we hypothesized that saroglitazar may prevent the development of HCC in rodents. METHODS: HCC was induced in C57BL/6 mice by a single intraperitoneal injection of 25 mg/kg diethylnitrosamine (DEN) at the age of 4 weeks and then feeding the animal a choline-deficient, L-amino acid- defined, high-fat diet (CDAHFD) for the entire study duration. Eight weeks after initiation of CDAHFD, saroglitazar (1 and 3 mg/kg) treatment was started and continued for another 27 weeks. RESULTS: Saroglitazar treatment significantly reduced the liver injury markers (serum ALT and AST), reversed hepatic steatosis and decreased the levels of pro-inflammatory cytokines like TNF-α in liver. It also resulted in a marked increase in serum adiponectin and osteopontin levels. All disease control animals showed hepatic tumors, which was absent in saroglitazar (3 mg/kg)- treatment group indicating 100% prevention of hepatic tumorigenesis. This is the first study demonstrating a potent PPARα agonist causing suppression of liver tumors in rodents, perhaps due to a strong anti-NASH activity of Saroglitazar that overrides its rodent-specific peroxisome proliferation activity. CONCLUSION: The data reveals potential of saroglitazar for chemoprevention of hepatocellular carcinoma in patients with NAFLD/NASH. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-023-10530-0.