Cargando…

Bioconversion of non-food corn biomass to polyol esters of fatty acid and single-cell oils

BACKGROUND: Lignocellulose is a valuable carbon source for the production of biofuels and biochemicals, thus having the potential to substitute fossil resources. Consolidated bio-saccharification (CBS) is a whole-cell-based catalytic technology previously developed to produce fermentable sugars from...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Guang-Lei, Bu, Xian-Ying, Chen, Chaoyang, Fu, Chunxiang, Chi, Zhe, Kosugi, Akihiko, Cui, Qiu, Chi, Zhen-Ming, Liu, Ya-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844004/
https://www.ncbi.nlm.nih.gov/pubmed/36650607
http://dx.doi.org/10.1186/s13068-023-02260-z
Descripción
Sumario:BACKGROUND: Lignocellulose is a valuable carbon source for the production of biofuels and biochemicals, thus having the potential to substitute fossil resources. Consolidated bio-saccharification (CBS) is a whole-cell-based catalytic technology previously developed to produce fermentable sugars from lignocellulosic agricultural wastes. The deep-sea yeast strain Rhodotorula paludigena P4R5 can produce extracellular polyol esters of fatty acids (PEFA) and intracellular single-cell oils (SCO) simultaneously. Therefore, the integration of CBS and P4R5 fermentation processes would achieve high-value-added conversion of lignocellulosic biomass. RESULTS: The strain P4R5 could co-utilize glucose and xylose, the main monosaccharides from lignocellulose, and also use fructose and arabinose for PEFA and SCO production at high levels. By regulating the sugar metabolism pathways for different monosaccharides, the strain could produce PEFA with a single type of polyol head. The potential use of PEFA as functional micelles was also determined. Most importantly, when sugar-rich CBS hydrolysates derived from corn stover or corncob residues were used to replace grain-derived pure sugars for P4R5 fermentation, similar PEFA and SCO productions were obtained, indicating the robust conversion of non-food corn plant wastes to high-value-added glycolipids and lipids. Since the produced PEFA could be easily collected from the culture via short-time standing, we further developed a semi-continuous process for PEFA production from corncob residue-derived CBS hydrolysate, and the PEFA titer and productivity were enhanced up to 41.1 g/L and 8.22 g/L/day, respectively. CONCLUSIONS: Here, we integrated the CBS process and the P4R5 fermentation for the robust production of high-value-added PEFA and SCO from non-food corn plant wastes. Therefore, this study suggests a feasible way for lignocellulosic agro-waste utilization and the potential application of P4R5 in industrial PEFA production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-023-02260-z.