Cargando…

Spatiotemporal trends in self-reported mask-wearing behavior in the United States: Analysis of a large cross-sectional survey

BACKGROUND: Face mask-wearing has been identified as an effective strategy to prevent transmission of SARS-CoV-2, yet mask mandates were never imposed nationally in the United States. This decision resulted in a patchwork of local policies and varying compliance potentially generating heterogeneitie...

Descripción completa

Detalles Bibliográficos
Autores principales: Taube, Juliana C, Susswein, Zachary, Bansal, Shweta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844018/
https://www.ncbi.nlm.nih.gov/pubmed/36656779
http://dx.doi.org/10.1101/2022.07.19.22277821
_version_ 1784870528705626112
author Taube, Juliana C
Susswein, Zachary
Bansal, Shweta
author_facet Taube, Juliana C
Susswein, Zachary
Bansal, Shweta
author_sort Taube, Juliana C
collection PubMed
description BACKGROUND: Face mask-wearing has been identified as an effective strategy to prevent transmission of SARS-CoV-2, yet mask mandates were never imposed nationally in the United States. This decision resulted in a patchwork of local policies and varying compliance potentially generating heterogeneities in the local trajectories of COVID-19 in the U.S. While numerous studies have investigated patterns and predictors of masking behavior nationally, most suffer from survey biases and none have been able to characterize mask-wearing at fine spatial scales across the U.S. through different phases of the pandemic. OBJECTIVE: Urgently needed is a debiased spatiotemporal characterization of mask-wearing behavior in the U.S. This information is critical to further assess the effectiveness of masking, evaluate drivers of transmission at different time points during the pandemic, and guide future public health decisions through, for example, forecasting disease surges. METHODS: We analyze spatiotemporal masking patterns in over eight million behavioral survey responses from across the United States starting in September 2020 through May 2021. We adjust for sample size and representation using binomial regression models and survey raking, respectively, to produce county-level monthly estimates of masking behavior. We additionally debias self-reported masking estimates using bias measures derived by comparing vaccination data from the same survey to official records at the county-level. Lastly, we evaluate whether individuals’ perceptions of their social environment can serve as a less biased form of behavioral surveillance than self-reported data. RESULTS: We find that county-level masking behavior is spatially heterogeneous along an urban-rural gradient, with mask-wearing peaking in winter 2021 and declining sharply through May 2021. Our results identify regions where targeted public health efforts could have been most effective and suggest that individuals’ frequency of mask-wearing may be influenced by national guidance and disease prevalence. We validate our bias-correction approach by comparing debiased self-reported mask-wearing estimates with community-reported estimates, after addressing issues of small sample size and representation. Self-reported behavior estimates are especially prone to social desirability and non-response biases and our findings demonstrate that these biases can be reduced if individuals are asked to report on community rather than self behaviors. CONCLUSIONS: Our work highlights the importance of characterizing public health behaviors at fine spatiotemporal scales to capture heterogeneities that may drive outbreak trajectories. Our findings also emphasize the need for a standardized approach to incorporating behavioral big data into public health response efforts. Even large surveys are prone to bias; thus, we advocate for a social sensing approach to behavioral surveillance to enable more accurate estimates of health behaviors. Finally, we invite the public health and behavioral research communities to use our publicly available estimates to consider how bias-corrected behavioral estimates may improve our understanding of protective behaviors during crises and their impact on disease dynamics.
format Online
Article
Text
id pubmed-9844018
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-98440182023-01-18 Spatiotemporal trends in self-reported mask-wearing behavior in the United States: Analysis of a large cross-sectional survey Taube, Juliana C Susswein, Zachary Bansal, Shweta medRxiv Article BACKGROUND: Face mask-wearing has been identified as an effective strategy to prevent transmission of SARS-CoV-2, yet mask mandates were never imposed nationally in the United States. This decision resulted in a patchwork of local policies and varying compliance potentially generating heterogeneities in the local trajectories of COVID-19 in the U.S. While numerous studies have investigated patterns and predictors of masking behavior nationally, most suffer from survey biases and none have been able to characterize mask-wearing at fine spatial scales across the U.S. through different phases of the pandemic. OBJECTIVE: Urgently needed is a debiased spatiotemporal characterization of mask-wearing behavior in the U.S. This information is critical to further assess the effectiveness of masking, evaluate drivers of transmission at different time points during the pandemic, and guide future public health decisions through, for example, forecasting disease surges. METHODS: We analyze spatiotemporal masking patterns in over eight million behavioral survey responses from across the United States starting in September 2020 through May 2021. We adjust for sample size and representation using binomial regression models and survey raking, respectively, to produce county-level monthly estimates of masking behavior. We additionally debias self-reported masking estimates using bias measures derived by comparing vaccination data from the same survey to official records at the county-level. Lastly, we evaluate whether individuals’ perceptions of their social environment can serve as a less biased form of behavioral surveillance than self-reported data. RESULTS: We find that county-level masking behavior is spatially heterogeneous along an urban-rural gradient, with mask-wearing peaking in winter 2021 and declining sharply through May 2021. Our results identify regions where targeted public health efforts could have been most effective and suggest that individuals’ frequency of mask-wearing may be influenced by national guidance and disease prevalence. We validate our bias-correction approach by comparing debiased self-reported mask-wearing estimates with community-reported estimates, after addressing issues of small sample size and representation. Self-reported behavior estimates are especially prone to social desirability and non-response biases and our findings demonstrate that these biases can be reduced if individuals are asked to report on community rather than self behaviors. CONCLUSIONS: Our work highlights the importance of characterizing public health behaviors at fine spatiotemporal scales to capture heterogeneities that may drive outbreak trajectories. Our findings also emphasize the need for a standardized approach to incorporating behavioral big data into public health response efforts. Even large surveys are prone to bias; thus, we advocate for a social sensing approach to behavioral surveillance to enable more accurate estimates of health behaviors. Finally, we invite the public health and behavioral research communities to use our publicly available estimates to consider how bias-corrected behavioral estimates may improve our understanding of protective behaviors during crises and their impact on disease dynamics. Cold Spring Harbor Laboratory 2023-01-04 /pmc/articles/PMC9844018/ /pubmed/36656779 http://dx.doi.org/10.1101/2022.07.19.22277821 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Taube, Juliana C
Susswein, Zachary
Bansal, Shweta
Spatiotemporal trends in self-reported mask-wearing behavior in the United States: Analysis of a large cross-sectional survey
title Spatiotemporal trends in self-reported mask-wearing behavior in the United States: Analysis of a large cross-sectional survey
title_full Spatiotemporal trends in self-reported mask-wearing behavior in the United States: Analysis of a large cross-sectional survey
title_fullStr Spatiotemporal trends in self-reported mask-wearing behavior in the United States: Analysis of a large cross-sectional survey
title_full_unstemmed Spatiotemporal trends in self-reported mask-wearing behavior in the United States: Analysis of a large cross-sectional survey
title_short Spatiotemporal trends in self-reported mask-wearing behavior in the United States: Analysis of a large cross-sectional survey
title_sort spatiotemporal trends in self-reported mask-wearing behavior in the united states: analysis of a large cross-sectional survey
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844018/
https://www.ncbi.nlm.nih.gov/pubmed/36656779
http://dx.doi.org/10.1101/2022.07.19.22277821
work_keys_str_mv AT taubejulianac spatiotemporaltrendsinselfreportedmaskwearingbehaviorintheunitedstatesanalysisofalargecrosssectionalsurvey
AT sussweinzachary spatiotemporaltrendsinselfreportedmaskwearingbehaviorintheunitedstatesanalysisofalargecrosssectionalsurvey
AT bansalshweta spatiotemporaltrendsinselfreportedmaskwearingbehaviorintheunitedstatesanalysisofalargecrosssectionalsurvey