Cargando…
Through the looking glass: Deep interpretable dynamic directed connectivity in resting fMRI
Brain network interactions are commonly assessed via functional (network) connectivity, captured as an undirected matrix of Pearson correlation coefficients. Functional connectivity can represent static and dynamic relations, but often these are modeled using a fixed choice for the data window Alter...
Autores principales: | Mahmood, Usman, Fu, Zening, Ghosh, Satrajit, Calhoun, Vince, Plis, Sergey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844250/ https://www.ncbi.nlm.nih.gov/pubmed/36356823 http://dx.doi.org/10.1016/j.neuroimage.2022.119737 |
Ejemplares similares
-
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI
por: Chen, Zikuan, et al.
Publicado: (2019) -
Interpreting models interpreting brain dynamics
por: Rahman, Md. Mahfuzur, et al.
Publicado: (2022) -
Tools of the trade: estimating time-varying connectivity patterns from fMRI data
por: Iraji, Armin, et al.
Publicado: (2020) -
MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes
por: Plis, Sergey M., et al.
Publicado: (2010) -
Replicability of time-varying connectivity patterns in large resting state fMRI samples
por: Abrol, Anees, et al.
Publicado: (2017)