Cargando…
Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection
We have developed simple and cost-effective surface-enhanced Raman scattering (SERS) substrates for the trace detection of pesticide (thiram and thiabendazole) and dye (methylene blue and Nile blue) molecules. Surface patterns (micro/nanostructures) on silicon (Si) substrates were fabricated using t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844677/ https://www.ncbi.nlm.nih.gov/pubmed/36741174 http://dx.doi.org/10.1039/d2ra07859g |
_version_ | 1784870706499026944 |
---|---|
author | Moram, Sree Satya Bharati Byram, Chandu Soma, Venugopal Rao |
author_facet | Moram, Sree Satya Bharati Byram, Chandu Soma, Venugopal Rao |
author_sort | Moram, Sree Satya Bharati |
collection | PubMed |
description | We have developed simple and cost-effective surface-enhanced Raman scattering (SERS) substrates for the trace detection of pesticide (thiram and thiabendazole) and dye (methylene blue and Nile blue) molecules. Surface patterns (micro/nanostructures) on silicon (Si) substrates were fabricated using the technique of femtosecond (fs) laser ablation in ambient air. Different surface patterns were achieved by tuning the number of laser pulses per unit area (4200, 8400, 42 000, and 84 000 pulses per mm(2)) on Si. Subsequently, chemically synthesized gold (Au) nanostars were embedded in these laser-patterned areas of Si to achieve a plasmonic active hybrid SERS substrate. Further, the SERS performance of the as-prepared Au nanostar embedded Si substrates were tested with different probe molecules. The as-prepared substrates allowed us to detect a minimum concentration of 0.1 ppm in the case of thiram, 1 ppm in the case of thiabendazole (TBZ), 1.6 ppb in the case of methylene blue (MB), and 1.8 ppb in case of Nile blue (NB). All these were achieved using a simple, field-deployable, portable Raman spectrometer. Additionally, the optimized SERS substrate demonstrated ∼21 times higher SERS enhancement than the Au nanostar embedded plain Si substrate. Furthermore, the optimized SERS platform was utilized to detect a mixture of dyes (MB + NB) and pesticides (thiram + TBZ). The possible reasons for the observed additional enhancement are elucidated. |
format | Online Article Text |
id | pubmed-9844677 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-98446772023-02-03 Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection Moram, Sree Satya Bharati Byram, Chandu Soma, Venugopal Rao RSC Adv Chemistry We have developed simple and cost-effective surface-enhanced Raman scattering (SERS) substrates for the trace detection of pesticide (thiram and thiabendazole) and dye (methylene blue and Nile blue) molecules. Surface patterns (micro/nanostructures) on silicon (Si) substrates were fabricated using the technique of femtosecond (fs) laser ablation in ambient air. Different surface patterns were achieved by tuning the number of laser pulses per unit area (4200, 8400, 42 000, and 84 000 pulses per mm(2)) on Si. Subsequently, chemically synthesized gold (Au) nanostars were embedded in these laser-patterned areas of Si to achieve a plasmonic active hybrid SERS substrate. Further, the SERS performance of the as-prepared Au nanostar embedded Si substrates were tested with different probe molecules. The as-prepared substrates allowed us to detect a minimum concentration of 0.1 ppm in the case of thiram, 1 ppm in the case of thiabendazole (TBZ), 1.6 ppb in the case of methylene blue (MB), and 1.8 ppb in case of Nile blue (NB). All these were achieved using a simple, field-deployable, portable Raman spectrometer. Additionally, the optimized SERS substrate demonstrated ∼21 times higher SERS enhancement than the Au nanostar embedded plain Si substrate. Furthermore, the optimized SERS platform was utilized to detect a mixture of dyes (MB + NB) and pesticides (thiram + TBZ). The possible reasons for the observed additional enhancement are elucidated. The Royal Society of Chemistry 2023-01-17 /pmc/articles/PMC9844677/ /pubmed/36741174 http://dx.doi.org/10.1039/d2ra07859g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Moram, Sree Satya Bharati Byram, Chandu Soma, Venugopal Rao Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection |
title | Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection |
title_full | Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection |
title_fullStr | Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection |
title_full_unstemmed | Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection |
title_short | Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection |
title_sort | femtosecond laser patterned silicon embedded with gold nanostars as a hybrid sers substrate for pesticide detection |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844677/ https://www.ncbi.nlm.nih.gov/pubmed/36741174 http://dx.doi.org/10.1039/d2ra07859g |
work_keys_str_mv | AT moramsreesatyabharati femtosecondlaserpatternedsiliconembeddedwithgoldnanostarsasahybridserssubstrateforpesticidedetection AT byramchandu femtosecondlaserpatternedsiliconembeddedwithgoldnanostarsasahybridserssubstrateforpesticidedetection AT somavenugopalrao femtosecondlaserpatternedsiliconembeddedwithgoldnanostarsasahybridserssubstrateforpesticidedetection |