Cargando…
Validity and reliability of the XSENSOR in-shoe pressure measurement system
BACKGROUND: In-shoe pressure measurement systems are used in research and clinical practice to quantify areas and levels of pressure underfoot whilst shod. Their validity and reliability across different pressures, durations of load and contact areas determine their appropriateness to address differ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844836/ https://www.ncbi.nlm.nih.gov/pubmed/36649238 http://dx.doi.org/10.1371/journal.pone.0277971 |
_version_ | 1784870743944724480 |
---|---|
author | Parker, Daniel Andrews, Jennifer Price, Carina |
author_facet | Parker, Daniel Andrews, Jennifer Price, Carina |
author_sort | Parker, Daniel |
collection | PubMed |
description | BACKGROUND: In-shoe pressure measurement systems are used in research and clinical practice to quantify areas and levels of pressure underfoot whilst shod. Their validity and reliability across different pressures, durations of load and contact areas determine their appropriateness to address different research questions or clinical assessments. XSENSOR is a relatively new pressure measurement device and warrants assessment. RESEARCH QUESTION: Does the XSENSOR in-shoe pressure measurement device have sufficient validity and reliability for clinical assessments in diabetes? METHODS: Two XSENSOR insoles were examined across two days with two lab-based protocols to assess regional and whole insole loading. The whole insole protocol applied 50–600 kPa of pressure across the insole surface for 30 seconds and measured at 0, 2, 10 and 30 seconds. The regional protocol used two (3.14 and 15.9 cm(2) surface area) cylinders to apply pressures of 50, 110 and 200 kPa to each insole. Three trials of all conditions were averaged. The validity (% difference and Root Mean Square Error: RMSE) and repeatability (Bland Altman, Intra-Class Correlation Coefficient: ICC) of the target pressures (whole insole) and contact area (regional) were outcome variables. RESULTS: Regional results demonstrated mean contact area errors of less than 1 cm(2) for both insoles and high repeatability (≥0.939). Whole insole measurement error was higher at higher pressures but resulted in average peak and mean pressures error < 10%. Reliability error was 3–10% for peak pressure, within the 15% defined as an analytical goal. SIGNIFICANCE: Errors associated with the quantification of pressure are low enough that they are unlikely to influence the assessments of interventions or screening of the at-risk-foot considering clinically relevant thresholds. Contact area is accurate due to a high spatial resolution and the repeatability of the XSENSOR system likely makes it appropriate for clinical applications that require multiple assessments. |
format | Online Article Text |
id | pubmed-9844836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-98448362023-01-18 Validity and reliability of the XSENSOR in-shoe pressure measurement system Parker, Daniel Andrews, Jennifer Price, Carina PLoS One Research Article BACKGROUND: In-shoe pressure measurement systems are used in research and clinical practice to quantify areas and levels of pressure underfoot whilst shod. Their validity and reliability across different pressures, durations of load and contact areas determine their appropriateness to address different research questions or clinical assessments. XSENSOR is a relatively new pressure measurement device and warrants assessment. RESEARCH QUESTION: Does the XSENSOR in-shoe pressure measurement device have sufficient validity and reliability for clinical assessments in diabetes? METHODS: Two XSENSOR insoles were examined across two days with two lab-based protocols to assess regional and whole insole loading. The whole insole protocol applied 50–600 kPa of pressure across the insole surface for 30 seconds and measured at 0, 2, 10 and 30 seconds. The regional protocol used two (3.14 and 15.9 cm(2) surface area) cylinders to apply pressures of 50, 110 and 200 kPa to each insole. Three trials of all conditions were averaged. The validity (% difference and Root Mean Square Error: RMSE) and repeatability (Bland Altman, Intra-Class Correlation Coefficient: ICC) of the target pressures (whole insole) and contact area (regional) were outcome variables. RESULTS: Regional results demonstrated mean contact area errors of less than 1 cm(2) for both insoles and high repeatability (≥0.939). Whole insole measurement error was higher at higher pressures but resulted in average peak and mean pressures error < 10%. Reliability error was 3–10% for peak pressure, within the 15% defined as an analytical goal. SIGNIFICANCE: Errors associated with the quantification of pressure are low enough that they are unlikely to influence the assessments of interventions or screening of the at-risk-foot considering clinically relevant thresholds. Contact area is accurate due to a high spatial resolution and the repeatability of the XSENSOR system likely makes it appropriate for clinical applications that require multiple assessments. Public Library of Science 2023-01-17 /pmc/articles/PMC9844836/ /pubmed/36649238 http://dx.doi.org/10.1371/journal.pone.0277971 Text en © 2023 Parker et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Parker, Daniel Andrews, Jennifer Price, Carina Validity and reliability of the XSENSOR in-shoe pressure measurement system |
title | Validity and reliability of the XSENSOR in-shoe pressure measurement system |
title_full | Validity and reliability of the XSENSOR in-shoe pressure measurement system |
title_fullStr | Validity and reliability of the XSENSOR in-shoe pressure measurement system |
title_full_unstemmed | Validity and reliability of the XSENSOR in-shoe pressure measurement system |
title_short | Validity and reliability of the XSENSOR in-shoe pressure measurement system |
title_sort | validity and reliability of the xsensor in-shoe pressure measurement system |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844836/ https://www.ncbi.nlm.nih.gov/pubmed/36649238 http://dx.doi.org/10.1371/journal.pone.0277971 |
work_keys_str_mv | AT parkerdaniel validityandreliabilityofthexsensorinshoepressuremeasurementsystem AT andrewsjennifer validityandreliabilityofthexsensorinshoepressuremeasurementsystem AT pricecarina validityandreliabilityofthexsensorinshoepressuremeasurementsystem |