Cargando…
Machine learning with textural analysis of longitudinal multiparametric MRI and molecular subtypes accurately predicts pathologic complete response in patients with invasive breast cancer
PURPOSE: To predict pathological complete response (pCR) after neoadjuvant chemotherapy using extreme gradient boosting (XGBoost) with MRI and non-imaging data at multiple treatment timepoints. MATERIAL AND METHODS: This retrospective study included breast cancer patients (n = 117) who underwent neo...
Autores principales: | Syed, Aaquib, Adam, Richard, Ren, Thomas, Lu, Jinyu, Maldjian, Takouhie, Duong, Tim Q. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844845/ https://www.ncbi.nlm.nih.gov/pubmed/36649274 http://dx.doi.org/10.1371/journal.pone.0280320 |
Ejemplares similares
-
Deep Learning Prediction of Pathologic Complete Response in Breast Cancer Using MRI and Other Clinical Data: A Systematic Review
por: Khan, Nabeeha, et al.
Publicado: (2022) -
Internal mammary lymph nodal response to neoadjuvant chemotherapy on imaging and breast cancer prognosis
por: Adam, Richard, et al.
Publicado: (2022) -
Mammographic Findings of Diffuse Axillary Tail Trabecular Thickening After the Second Booster of COVID-19 Vaccination
por: Adam, Richard, et al.
Publicado: (2022) -
Deep learning applications to breast cancer detection by magnetic resonance imaging: a literature review
por: Adam, Richard, et al.
Publicado: (2023) -
Usefulness of the Texture Signatures Based on Multiparametric MRI in Predicting Growth Hormone Pituitary Adenoma Subtypes
por: Liu, Chen-Xi, et al.
Publicado: (2021)