Cargando…
A privacy-preserving and computation-efficient federated algorithm for generalized linear mixed models to analyze correlated electronic health records data
Large collaborative research networks provide opportunities to jointly analyze multicenter electronic health record (EHR) data, which can improve the sample size, diversity of the study population, and generalizability of the results. However, there are challenges to analyzing multicenter EHR data i...
Autores principales: | Yan, Zhiyu, Zachrison, Kori S., Schwamm, Lee H., Estrada, Juan J., Duan, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844867/ https://www.ncbi.nlm.nih.gov/pubmed/36649349 http://dx.doi.org/10.1371/journal.pone.0280192 |
Ejemplares similares
-
Changes in Virtual and In-Person Health Care Utilization in a Large Health System During the COVID-19 Pandemic
por: Zachrison, Kori S., et al.
Publicado: (2021) -
Privacy-preserving construction of generalized linear mixed model for biomedical computation
por: Zhu, Rui, et al.
Publicado: (2020) -
dPQL: a lossless distributed algorithm for generalized linear mixed model with application to privacy-preserving hospital profiling
por: Luo, Chongliang, et al.
Publicado: (2022) -
Privacy-preserving GWAS analysis on federated genomic datasets
por: Constable, Scott D, et al.
Publicado: (2015) -
Designing an Algorithm to Preserve Privacy for Medical Record Linkage With Error-Prone Data
por: Pal, Doyel, et al.
Publicado: (2014)