Cargando…
Predicting the combined effects of case isolation, safe funeral practices, and contact tracing during Ebola virus disease outbreaks
BACKGROUND: The recent outbreaks of Ebola virus disease (EVD) in Uganda and the Marburg virus disease (MVD) in Ghana reflect a persisting threat of Filoviridae to the global health community. Characteristic of Filoviridae are not just their high case fatality rates, but also that corpses are highly...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844901/ https://www.ncbi.nlm.nih.gov/pubmed/36649296 http://dx.doi.org/10.1371/journal.pone.0276351 |
Sumario: | BACKGROUND: The recent outbreaks of Ebola virus disease (EVD) in Uganda and the Marburg virus disease (MVD) in Ghana reflect a persisting threat of Filoviridae to the global health community. Characteristic of Filoviridae are not just their high case fatality rates, but also that corpses are highly contagious and prone to cause infections in the absence of appropriate precautions. Vaccines against the most virulent Ebolavirus species, the Zaire ebolavirus (ZEBOV) are approved. However, there exists no approved vaccine or treatment against the Sudan ebolavirus (SUDV) which causes the current outbreak of EVD. Hence, the control of the outbreak relies on case isolation, safe funeral practices, and contact tracing. So far, the effectiveness of these control measures was studied only separately by epidemiological models, while the impact of their interaction is unclear. METHODS AND FINDINGS: To sustain decision making in public health-emergency management, we introduce a predictive model to study the interaction of case isolation, safe funeral practices, and contact tracing. The model is a complex extension of an SEIR-type model, and serves as an epidemic preparedness tool. The model considers different phases of the EVD infections, the possibility of infections being treated in isolation (if appropriately diagnosed), in hospital (if not properly diagnosed), or at home (if the infected do not present to hospital for whatever reason). It is assumed that the corpses of those who died in isolation are buried with proper safety measures, while those who die outside isolation might be buried unsafely, such that transmission can occur during the funeral. Furthermore, the contacts of individuals in isolation will be traced. Based on parameter estimates from the scientific literature, the model suggests that proper diagnosis and hence isolation of cases has the highest impact in reducing the size of the outbreak. However, the combination of case isolation and safe funeral practices alone are insufficient to fully contain the epidemic under plausible parameters. This changes if these measures are combined with contact tracing. In addition, shortening the time to successfully trace back contacts contribute substantially to contain the outbreak. CONCLUSIONS: In the absence of an approved vaccine and treatment, EVD management by proper and fast diagnostics in combination with epidemic awareness are fundamental. Awareness will particularly facilitate contact tracing and safe funeral practices. Moreover, proper and fast diagnostics are a major determinant of case isolation. The model introduced here is not just applicable to EVD, but also to other viral hemorrhagic fevers such as the MVD or the Lassa fever. |
---|