Cargando…
Stable variable ranking and selection in regularized logistic regression for severely imbalanced big binary data
We develop a novel covariate ranking and selection algorithm for regularized ordinary logistic regression (OLR) models in the presence of severe class-imbalance in high dimensional datasets with correlated signal and noise covariates. Class-imbalance is resolved using response-based subsampling whic...
Autores principales: | Nadeem, Khurram, Jabri, Mehdi-Abderrahman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844919/ https://www.ncbi.nlm.nih.gov/pubmed/36649281 http://dx.doi.org/10.1371/journal.pone.0280258 |
Ejemplares similares
-
Primer on binary logistic regression
por: Harris, Jenine K
Publicado: (2021) -
A descriptive study of variable discretization and cost-sensitive logistic regression on imbalanced credit data
por: Zhang, Lili, et al.
Publicado: (2019) -
Correction: Primer on binary logistic regression
Publicado: (2022) -
Purposeful selection of variables in logistic regression
por: Bursac, Zoran, et al.
Publicado: (2008) -
Supporting Regularized Logistic Regression Privately and Efficiently
por: Li, Wenfa, et al.
Publicado: (2016)