Cargando…

Identifying COVID-19 english informative tweets using limited labelled data

Identifying COVID-19 informative tweets is very useful in building monitoring systems to track the latest updates. Existing approaches to identify informative tweets rely on a large number of labelled tweets to achieve good performances. As labelling is an expensive and laborious process, there is a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kothuru, Srinivasulu, Santhanavijayan, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9844936/
https://www.ncbi.nlm.nih.gov/pubmed/36686376
http://dx.doi.org/10.1007/s13278-023-01025-8
Descripción
Sumario:Identifying COVID-19 informative tweets is very useful in building monitoring systems to track the latest updates. Existing approaches to identify informative tweets rely on a large number of labelled tweets to achieve good performances. As labelling is an expensive and laborious process, there is a need to develop approaches that can identify COVID-19 informative tweets using limited labelled data. In this paper, we propose a simple yet novel labelled data-efficient approach that achieves the state-of-the-art (SOTA) F1-score of 91.23 on the WNUT COVID-19 dataset using just 1000 tweets (14.3% of the full training set). Our labelled data-efficient approach starts with limited labelled data, augment it using data augmentation methods and then fine-tune the model using augmented data set. It is the first work to approach the task of identifying COVID-19 English informative tweets using limited labelled data yet achieve the new SOTA performance.