Cargando…

lncRNA DLX6-AS1 Promotes Myocardial Ischemia-Reperfusion Injury through Mediating the miR-204-5p/FBXW7 Axis

Myocardial ischemia-reperfusion (IR) injury is the restoration of blood flow post ischemia, which threatens the human life. Long noncoding RNA distal-less homeobox 6 antisense 1 (DLX6-AS1) has been found to take part in the IR-induced cerebral injury. Here, we determined the functional role of DLX6-...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Fanshun, Wu, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845044/
https://www.ncbi.nlm.nih.gov/pubmed/36660176
http://dx.doi.org/10.1155/2023/9380398
_version_ 1784870802201509888
author Wang, Fanshun
Wu, Yuan
author_facet Wang, Fanshun
Wu, Yuan
author_sort Wang, Fanshun
collection PubMed
description Myocardial ischemia-reperfusion (IR) injury is the restoration of blood flow post ischemia, which threatens the human life. Long noncoding RNA distal-less homeobox 6 antisense 1 (DLX6-AS1) has been found to take part in the IR-induced cerebral injury. Here, we determined the functional role of DLX6-AS1 in IR-induced myocardial injury. We ligated the left anterior descending coronary artery of rats to induce IR injury. IR injury rats exhibited severe tissue damage and increase of infraction size. The levels of lactate dehydrogenase (LDH), creatine kinase (CK), proinflammatory factors including MCP-1, IL-6, and IL-1β, and cell apoptosis were also enhanced in IR rats, indicating that IR induced significant myocardial injury in rats. DLX6-AS1 expression was elevated in the myocardial tissues of IR injury rats, while DLX6-AS1 deficiency alleviated IR-induced myocardial injury in rats by reducing inflammatory response and cell apoptosis. Moreover, rat embryonic cardiomyocyte cell line H9c2 was subjected to hypoxia reoxygenation (HR). DLX6-AS1 was upregulated in the HR-treated H9c2 cells, and DLX6-AS1 enhanced the expression of F-box and WD40 repeat domain-containing 7 (FBXW7) by sponging miR-204-5p. Inhibition of DLX6-AS1 inhibited inflammatory response and cell apoptosis in H9c2 cells via miR-204-5p/FBXW7 axis. In conclusion, this work demonstrates that DLX6-AS1 accelerates myocardial IR injury through regulating miR-204-5p/FBXW7 axis. Thus, this work provides a novel ceRNA DLX6-AS1/miR-204-5p/FBXW7 axis in myocardial IR injury, and DLX6-AS1 may be a potential target for the treatment of myocardial IR injury.
format Online
Article
Text
id pubmed-9845044
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-98450442023-01-18 lncRNA DLX6-AS1 Promotes Myocardial Ischemia-Reperfusion Injury through Mediating the miR-204-5p/FBXW7 Axis Wang, Fanshun Wu, Yuan Mediators Inflamm Research Article Myocardial ischemia-reperfusion (IR) injury is the restoration of blood flow post ischemia, which threatens the human life. Long noncoding RNA distal-less homeobox 6 antisense 1 (DLX6-AS1) has been found to take part in the IR-induced cerebral injury. Here, we determined the functional role of DLX6-AS1 in IR-induced myocardial injury. We ligated the left anterior descending coronary artery of rats to induce IR injury. IR injury rats exhibited severe tissue damage and increase of infraction size. The levels of lactate dehydrogenase (LDH), creatine kinase (CK), proinflammatory factors including MCP-1, IL-6, and IL-1β, and cell apoptosis were also enhanced in IR rats, indicating that IR induced significant myocardial injury in rats. DLX6-AS1 expression was elevated in the myocardial tissues of IR injury rats, while DLX6-AS1 deficiency alleviated IR-induced myocardial injury in rats by reducing inflammatory response and cell apoptosis. Moreover, rat embryonic cardiomyocyte cell line H9c2 was subjected to hypoxia reoxygenation (HR). DLX6-AS1 was upregulated in the HR-treated H9c2 cells, and DLX6-AS1 enhanced the expression of F-box and WD40 repeat domain-containing 7 (FBXW7) by sponging miR-204-5p. Inhibition of DLX6-AS1 inhibited inflammatory response and cell apoptosis in H9c2 cells via miR-204-5p/FBXW7 axis. In conclusion, this work demonstrates that DLX6-AS1 accelerates myocardial IR injury through regulating miR-204-5p/FBXW7 axis. Thus, this work provides a novel ceRNA DLX6-AS1/miR-204-5p/FBXW7 axis in myocardial IR injury, and DLX6-AS1 may be a potential target for the treatment of myocardial IR injury. Hindawi 2023-01-10 /pmc/articles/PMC9845044/ /pubmed/36660176 http://dx.doi.org/10.1155/2023/9380398 Text en Copyright © 2023 Fanshun Wang and Yuan Wu. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wang, Fanshun
Wu, Yuan
lncRNA DLX6-AS1 Promotes Myocardial Ischemia-Reperfusion Injury through Mediating the miR-204-5p/FBXW7 Axis
title lncRNA DLX6-AS1 Promotes Myocardial Ischemia-Reperfusion Injury through Mediating the miR-204-5p/FBXW7 Axis
title_full lncRNA DLX6-AS1 Promotes Myocardial Ischemia-Reperfusion Injury through Mediating the miR-204-5p/FBXW7 Axis
title_fullStr lncRNA DLX6-AS1 Promotes Myocardial Ischemia-Reperfusion Injury through Mediating the miR-204-5p/FBXW7 Axis
title_full_unstemmed lncRNA DLX6-AS1 Promotes Myocardial Ischemia-Reperfusion Injury through Mediating the miR-204-5p/FBXW7 Axis
title_short lncRNA DLX6-AS1 Promotes Myocardial Ischemia-Reperfusion Injury through Mediating the miR-204-5p/FBXW7 Axis
title_sort lncrna dlx6-as1 promotes myocardial ischemia-reperfusion injury through mediating the mir-204-5p/fbxw7 axis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845044/
https://www.ncbi.nlm.nih.gov/pubmed/36660176
http://dx.doi.org/10.1155/2023/9380398
work_keys_str_mv AT wangfanshun lncrnadlx6as1promotesmyocardialischemiareperfusioninjurythroughmediatingthemir2045pfbxw7axis
AT wuyuan lncrnadlx6as1promotesmyocardialischemiareperfusioninjurythroughmediatingthemir2045pfbxw7axis