Cargando…

Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data

Detalles Bibliográficos
Autores principales: Mallik, Saurav, Mukhopadhyay, Anirban, Li, Aimin, Odom, Gabriel J, Tomar, Namrata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845237/
https://www.ncbi.nlm.nih.gov/pubmed/36685925
http://dx.doi.org/10.3389/fgene.2022.1083719
_version_ 1784870850134016000
author Mallik, Saurav
Mukhopadhyay, Anirban
Li, Aimin
Odom, Gabriel J
Tomar, Namrata
author_facet Mallik, Saurav
Mukhopadhyay, Anirban
Li, Aimin
Odom, Gabriel J
Tomar, Namrata
author_sort Mallik, Saurav
collection PubMed
description
format Online
Article
Text
id pubmed-9845237
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98452372023-01-19 Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data Mallik, Saurav Mukhopadhyay, Anirban Li, Aimin Odom, Gabriel J Tomar, Namrata Front Genet Genetics Frontiers Media S.A. 2023-01-04 /pmc/articles/PMC9845237/ /pubmed/36685925 http://dx.doi.org/10.3389/fgene.2022.1083719 Text en Copyright © 2023 Mallik, Mukhopadhyay, Li, Odom and Tomar. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Mallik, Saurav
Mukhopadhyay, Anirban
Li, Aimin
Odom, Gabriel J
Tomar, Namrata
Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data
title Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data
title_full Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data
title_fullStr Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data
title_full_unstemmed Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data
title_short Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data
title_sort editorial: artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845237/
https://www.ncbi.nlm.nih.gov/pubmed/36685925
http://dx.doi.org/10.3389/fgene.2022.1083719
work_keys_str_mv AT malliksaurav editorialartificialintelligenceforextractingphenotypicfeaturesanddiseasesubtypingappliedtosinglecellsequencingdata
AT mukhopadhyayanirban editorialartificialintelligenceforextractingphenotypicfeaturesanddiseasesubtypingappliedtosinglecellsequencingdata
AT liaimin editorialartificialintelligenceforextractingphenotypicfeaturesanddiseasesubtypingappliedtosinglecellsequencingdata
AT odomgabrielj editorialartificialintelligenceforextractingphenotypicfeaturesanddiseasesubtypingappliedtosinglecellsequencingdata
AT tomarnamrata editorialartificialintelligenceforextractingphenotypicfeaturesanddiseasesubtypingappliedtosinglecellsequencingdata