Cargando…
Editorial: Artificial intelligence for extracting phenotypic features and disease subtyping applied to single-cell sequencing data
Autores principales: | Mallik, Saurav, Mukhopadhyay, Anirban, Li, Aimin, Odom, Gabriel J, Tomar, Namrata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845237/ https://www.ncbi.nlm.nih.gov/pubmed/36685925 http://dx.doi.org/10.3389/fgene.2022.1083719 |
Ejemplares similares
-
Editorial: Artificial Intelligence in Bioinformatics and Drug Repurposing: Methods and Applications
por: Zheng, Pan, et al.
Publicado: (2022) -
Editorial: Artificial intelligence for personalized and predictive genomics data analysis
por: Ahmed, Zeeshan, et al.
Publicado: (2023) -
A Deep Learning–Based Framework for Supporting Clinical Diagnosis of Glioblastoma Subtypes
por: Munquad, Sana, et al.
Publicado: (2022) -
Editorial: Deep learning for disease prediction in next-generation sequencing and biomedical imaging data
por: Mallik, Saurav, et al.
Publicado: (2023) -
Editorial: Artificial Intelligence Bioinformatics: Development and Application of Tools for Omics and Inter-Omics Studies
por: Chicco, Davide, et al.
Publicado: (2020)